
COBOL Programming with VSCode
A beginner’s guide to COBOL using modern tooling

1

Preface
Abstract
One computer programming language was designed specifically for business, Common Business-Oriented
Language, COBOL. Today COBOL remains as relevant as ever, handling $3 trillion in commerce every day.

This publication is aimed at beginners looking to build a working understanding of COBOL programming.
It describes how to work with COBOL using modern tools including Visual Studio Code with Zowe and Z
Open Editor extensions. It describes how to write, test, execute, and debug COBOL programs.

Authors
Michael Bauer is a development leader for the Open Mainframe value stream at Broadcom and is a squad
lead for the Zowe open source initiative. Zowe, a popular framework of modern interfaces for z/OS, opens
the mainframe to DevOps tools and practices. Mike leads the Command Line Interface (CLI) squad, which
created and recently spun-off the successful Zowe Explorer extension for Visual Studio Code. A frequent
speaker and blogger, Mike runs interactive workshops around the world for those interested in incorporating
mainframe in their enterprise DevOps initiatives.

Zeibura Kathau is a technical writer for the Mainframe DevOps value stream at Broadcom. He works on
the open-source projects Che4z and Code4z, which are IDE extension packages for mainframe developers. He
has 8 years of experience in the Information Technology field.

Makenzie Manna is an IBM Redbooks Project Leader in the United States. She has 3 years of experience
in the Computer Science Software Development field. She holds a Master’s degree in Computer Science
Software Development from Marist College. Her areas of expertise include mathematics, IBM Z and cloud
computing.

Paul Newton is a Consulting IT Specialist in the United States. He has 40 years of experience in the
Information Technology field. He holds a degree in Information Systems from the University of Arizona. His
areas of expertise include IBM Z, z/OS, and LinuxONE. He has written extensively on implementation of
z/OS based technology.

Jonathan Sayles is a technical educator at IBM, where he conducts presentations, seminars and training
courses, as well as producing educational materials. His more than 40 years in the IT education and computer
industries encompass work within both academic and corporate development organizations. He has also
been engaged as a software developer/designer/consultant, educator, and author, with a focus on relational
database, IDE, and object technologies. In addition to authoring/publishing 16 books, Jon has written and
published more than 150 articles in technical journals, and served as technical editor for several IT magazines.
He is also co-author of IBM Redbook publications Transitioning: Informix 4GL to Enterprise Generation
Language (EGL), SG24-6673 and z/OS Traditional Application Maintenance and Support, SG24-7868.

William Yates is a Software engineer working for IBM UK. For the majority of his career he has working
on the CICS TS product mainly as a software tester and now as Test Architect. He has delivered technical
content for many Redbooks, video courses and at conferences around the world. He is also one of the leaders
of the Galasa project, building an open source integration test framework for hybrid cloud applications
available at https://galasa.dev

Acknowledgements
Special thanks to the following people for participating in the residency to shape the content in this publication.

• Dr. Tak Auyeung, Professor, American River College

• Jeffrey Bisti, Z Ecosystem Architect, IBM

• Ilicena Elliott, IT Specialist II, Employment Development Department

• Martin Keen, Technical Content Services, IBM

2

https://galasa.dev/

• Sudharsana Srinivasan, z Influencer Ecosystem Program Coordinator, IBM

• Suzy Wong, Information Technology Specialist, DMV

•

Left-to-right: Ilicena, Suzy, Makenzie, Martin, Paul, and Tak

3

Contents
Part 1 - Getting started 9

1 Why COBOL? 9
1.1 What is COBOL? . 9
1.2 How is COBOL being used today? . 9
1.3 Why should I care about COBOL? . 9

2 VSCode with Zowe Explorer 11
2.1 Introduction to Zowe Explorer . 11
2.2 Using Zowe Explorer . 11
2.3 Profiles in Zowe Explorer . 12

2.3.1 Secure Credentials . 12
2.3.2 Creating a New Profile . 12
2.3.3 Editing Profiles . 14
2.3.4 Deleting Profiles . 15

2.4 Summary . 17

3 VSCode with Z Open Editor 18
3.1 Introduction to the IBM Z Open Editor . 18

3.1.1 What is the IBM Z Open Editor? . 18
3.1.2 The role of the Language Server Protocol . 18
3.1.3 Installing the IBM Z Open Editor for VS Code . 19

3.2 Basic editing . 19
3.2.1 Known file extensions . 19
3.2.2 Margins . 19
3.2.3 Variable expansion . 20
3.2.4 Syntax highlighting . 21

3.3 Navigation of code . 21
3.3.1 Outline view . 21
3.3.2 Breadcrumb view . 21
3.3.3 Jump to declaration / reference . 22

3.4 Code-completion . 23
3.4.1 COBOL reserved word completion . 23
3.4.2 Variable completion . 23
3.4.3 CICS, MQ, DB2 API completion . 24

3.5 Refactoring code . 24
3.5.1 Renaming variables . 24
3.5.2 Handling errors . 25

3.6 Summary . 26

4 VS Code with Code4z Open-Source Extension Package 27
4.1 What is Code4z? . 27
4.2 Known File Extensions . 27
4.3 Syntax Highlighting and Coloring . 27
4.4 Syntax and Semantic Check . 27
4.5 Navigation of Code . 28

4.5.1 Go To Definition . 28
4.5.2 Find All References . 28

4.6 Copybook Support . 28
4.7 Autocomplete . 29
4.8 Summary . 29

5 Zowe CLI and Zowe CLI Plug-ins 30

4

5.1 What is a CLI and why would you use it? . 30
5.2 What is Zowe CLI? . 30
5.3 Zowe CLI interactive use . 31

5.3.1 Installing Zowe CLI . 31
5.3.2 Interactive Help . 31
5.3.3 Zowe Profiles . 32
5.3.4 Interacting with z/OS Data Sets . 33
5.3.5 Interacting with z/OS Jobs . 33

5.4 Automating tasks using Zowe CLI . 34
5.4.1 Automated Job Submission . 34
5.4.2 Using Other Programming Languages and Continuous Integration 36
5.4.3 Additional Examples . 37

5.5 The world of modern open source tooling . 37
5.6 Summary . 37

6 Installation of VSCode and extensions 38
6.1 Install prerequisites . 38

6.1.1 Install node.js . 38
6.1.2 Install Java SDK . 39

6.2 Install VSCode . 39
6.3 Install VSCode extensions . 40

6.3.1 Zowe Explorer . 40
6.3.2 IBM Z Open Editor . 41
6.3.3 Code4z . 42

6.4 Summary . 42

7 Installation of Zowe CLI and Plug-ins 43
7.1 Install prerequisites - Node.js . 43
7.2 Install Zowe CLI . 43

7.2.1 Install from Public npm Registry . 43
7.2.2 Install from Bundled Package . 44

7.3 Install Zowe CLI Plug-ins . 44
7.3.1 Install from Public npm Registry . 44
7.3.2 Install from Bundled Package . 45

7.4 Summary . 45

Part 2 - Learning COBOL 46

8 Basic COBOL 46
8.1 COBOL characteristics . 46

8.1.1 Enterprise COBOL . 46
8.1.2 Chapter objectives . 47

8.2 What must a novice COBOL programmer know to be an experienced COBOL programmer? 47
8.2.1 What are the coding rules and the reference format? 47
8.2.2 What is the structure of COBOL? . 48
8.2.3 What are COBOL reserved words? . 48
8.2.4 What is a COBOL statement? . 48
8.2.5 What is the meaning of a scope terminator? . 48
8.2.6 What is a COBOL sentence? . 49
8.2.7 What is a COBOL paragraph? . 49
8.2.8 What is a COBOL section? . 49

8.3 COBOL Divisions . 49
8.3.1 COBOL Divisions structure . 49
8.3.2 What are the four Divisions of COBOL? . 49

8.4 PROCEDURE DIVISION explained . 50

5

8.5 Additional information . 50
8.5.1 Professional manuals . 50
8.5.2 Learn more about recent COBOL advancements . 51

8.6 Lab . 51
8.7 Lab - Zowe CLI & Automation . 59

8.7.1 Zowe CLI - Interactive Usage . 60
8.7.2 Zowe CLI - Programmatic Usage . 64

9 Data division 67
9.1 Variables / Data-items . 67

9.1.1 Variable / Data-item name restrictions and data types 67
9.2 PICTURE clause . 68

9.2.1 PIC clause symbols and data types . 68
9.2.2 Coding COBOL variable / data-item names . 68
9.2.3 PICTURE clause character-string representation . 68

9.3 Literals . 69
9.3.1 Figurative constants . 69
9.3.2 Data relationships . 69
9.3.3 Levels of data . 70

9.4 MOVE and COMPUTE . 70
9.5 Lab . 72

10 File handling 74
10.1 COBOL code used for sequential file handling . 74

10.1.1 COBOL inputs and outputs . 75
10.1.2 FILE-CONTROL paragraph . 75
10.1.3 COBOL external data source . 76
10.1.4 Data sets, records, and fields . 76
10.1.5 Blocks . 76
10.1.6 ASSIGN clause . 77

10.2 PROCEDURE DIVISION sequential file handling . 77
10.2.1 Open input and output for read and write . 77
10.2.2 Close input and output . 78

10.3 COBOL programming techniques to read and write records sequentially 78
10.3.1 READ-NEXT-RECORD paragraph execution . 79
10.3.2 READ-RECORD paragraph . 79
10.3.3 WRITE-RECORD paragraph . 80
10.3.4 Iterative processing of READ-NEXT-RECORD paragraph 80

10.4 Lab . 81

11 Program structure 84
11.1 Styles of programming . 84

11.1.1 What is structured programming . 84
11.1.2 What is Object Orientated Programming . 85
11.1.3 COBOL programming style . 85

11.2 Structure of the Procedure Division . 85
11.2.1 Program control and flow through a basic program . 85
11.2.2 Inline and out of line perform statements . 86
11.2.3 Using performs to code a loop . 86
11.2.4 Learning bad behavior using the GO TO keyword . 87

11.3 Paragraphs as blocks of code . 88
11.3.1 Designing the content of a paragraph . 89
11.3.2 Order and naming of paragraphs . 89

11.4 Program control with paragraphs . 90

6

11.4.1 PERFORM TIMES . 91
11.4.2 PERFORM THROUGH . 91
11.4.3 PERFORM UNTIL . 91
11.4.4 PERFORM VARYING . 92

11.5 Using subprograms . 93
11.5.1 Specifying the target program . 93
11.5.2 Specifying program variables . 93
11.5.3 Specifying the return value . 94

11.6 Summary . 94
11.7 Lab . 94

12 File output 95
12.1 Review of COBOL write output process . 95

12.1.1 ENVIRONMENT DIVISION . 95
12.2 FILE DESCRIPTOR . 96

12.2.1 FILLER . 96
12.3 Report and column headers . 96

12.3.1 HEADER-2 . 98
12.4 PROCEDURE DIVISION . 99

12.4.1 MOVE sentences . 99
12.4.2 PRINT-REC FROM sentences . 99

12.5 Lab . 100

13 Conditional expressions 101
13.1 Boolean logic, operators, operands, and identifiers . 101

13.1.1 COBOL conditional expressions and operators . 101
13.1.2 Examples of conditional expressions using Boolean operators 102

13.2 Conditional expression reserved words and terminology . 103
13.2.1 IF, EVALUATE, PERFORM and SEARCH . 103
13.2.2 Conditional states . 103
13.2.3 Conditional names . 103

13.3 Conditional operators . 104
13.4 Conditional expressions . 105

13.4.1 IF ELSE (THEN) statements . 105
13.4.2 EVALUATE statements . 105
13.4.3 PERFORM statements . 106
13.4.4 SEARCH statements . 106

13.5 Conditions . 106
13.5.1 Relation conditions . 106
13.5.2 Class conditions . 106
13.5.3 Sign conditions . 107

13.6 Lab . 107

14 Arithmetic expressions 109
14.1 What is an arithmetic expression? . 109

14.1.1 Arithmetic operators . 109
14.1.2 Arithmetic statements . 110

14.2 Arithmetic expression precedence rules . 110
14.2.1 Parentheses . 110

14.3 Arithmetic expression limitations . 111
14.4 Arithmetic statement operands . 111

14.4.1 Size of operands . 111
14.5 Examples of COBOL arithmetic statements . 112
14.6 Lab . 114

7

15 Data types 115
15.1 Data representation . 115

15.1.1 Numerical value representation . 115
15.1.2 Text representation . 116

15.2 COBOL DISPLAY vs COMPUTATIONAL . 116
15.3 Lab . 116

16 Intrinsic functions 118
16.1 What is an intrinsic function? . 118

16.1.1 Intrinsic function syntax . 118
16.1.2 Categories of intrinsic functions . 119

16.2 Intrinsic functions in Enterprise COBOL for z/OS V6.3 . 119
16.2.1 Mathematical example . 119
16.2.2 Statistical example . 120
16.2.3 Date/time example . 120
16.2.4 Financial example . 120
16.2.5 Character-handling example . 121

16.3 Use of intrinsic functions with reference modifiers . 121
16.4 Lab . 121

8

Part 1 - Getting started

1 Why COBOL?
This chapter introduces COBOL, specifically with reference to its use in enterprise systems.

• What is COBOL?

• How is COBOL being used today?

• Why should I care about COBOL?

1.1 What is COBOL?
One computer programming language was designed specifically for business, Common Business-Oriented
Language, COBOL. COBOL has been transforming and supporting business globally since its invention in
1959. COBOL is responsible for the efficient, reliable, secure and unseen day-to-day operation of the world’s
economy. The day-to-day logic used to process our most critical data is frequently done using COBOL.

Many COBOL programs have decades of improvements which includes business logic, performance, pro-
gramming paradigm, and application program interfaces to transaction processors, data sources, and the
Internet.

Many hundreds of programming languages were developed during the past 60 years with expectations to
transform the information technology landscape. Some of these languages, such as C, C++, Java, and
JavaScript, have indeed transformed the ever-expanding information technology landscape. However, COBOL
continues to distinguish itself from other programming languages due to its inherent ability to handle vast
amounts of critical data stored in the largest servers such as the IBM Z mainframe.

Continuously updated to incorporate modernized and proven programming paradigms and best practices,
COBOL will remain a critical programming language into the foreseeable future. Learning COBOL enables
you to read and understand the day-to-day operation of critical systems. COBOL knowledge and proficiency
is a required skill to be a “full stack developer” in large enterprises.

1.2 How is COBOL being used today?
COBOL is everywhere. You have probably used an application written in COBOL today. For example,
consider the following statistics:

• About 95% of ATM swipes use COBOL code.

• COBOL powers 80% of in-person transactions.

• Every day, COBOL systems handle $3 trillion in commerce.

How pervasive is COBOL? Consider these mind-boggling facts:

• Every day there are 200 times more COBOL transactions executed than there are Google searches.

• There are over 220 billion lines of COBOL programs running today, which equates to around 80% of
the world’s actively used code.

• 1,500,000,000 lines of new COBOL code is written each year.

1.3 Why should I care about COBOL?
The COBOL programming language, COBOL compiler optimization, and COBOL run time performance
have over 50 years of technology advancements that contribute to the foundation of world’s economy. The
core business logic of many large enterprises has decades of business improvement and tuning embedded in
COBOL programs.

9

The point is - whatever you read or hear about COBOL, be very skeptical. If you have the opportunity to
work directly with someone involved in writing or maintaining critical business logic using COBOL, you will
learn about the operation of the core business. Business managers, business analysts, and decision makers
come and go. The sum of all good business decisions can frequently be found in the decades of changes
implemented in COBOL programs. The answer to “How does this business actually work?” can be found in
COBOL programs.

Add the following to your awareness of COBOL. It is an absolute myth that you must be at least 50 years
old to be good with COBOL. COBOL is incredibly easy to learn and understand. One of the many reasons
financial institutions like COBOL, is the fact that it is not necessary to be a programmer to read and
understand the logic. This is important because critical business logic code is subject to audit. Auditors
are not programmers. However, auditors are responsible for ensuring the business financial statements are
presented fairly. It is COBOL processing that frequently result in the business ledger updates and subsequent
financial statements.

Now for a real-world lesson. A comment recently made in a well-known business journal by someone with a
suspect agenda was quoted as saying, “COBOL is a computing language used in business and finance. It was
first designed in 1959 and is pretty old and slow.” A highly experienced business technology person knows
the only true part of that last sentence was that COBOL was first designed in 1959.

It’s no secret that lots of banks still run millions of lines of COBOL on mainframes. They probably want to
replace that at some point. So why haven’t they? Most banks have been around long enough to still feel the
pain from the ~1960’s software crisis. After spending enormous amounts of money, and time, on developing
their computer systems, they finally ended up with a fully functional, well-tested, stable COBOL core system.

Speaking with people that have worked on such systems, nowadays they have Java front ends and wrappers
which add functionality or more modern interfaces, they run the application on virtualized replicated servers,
but in the end, everything runs through that single core logic. And that core logic is rarely touched or
changed, unless necessary.

From a software engineering perspective, that even makes sense. Rewrites are always more expensive than
planned, and always take longer than planned (OK, probably not always. But often.). Never change a
running system etc., unless very good technical and business reasons exist.

10

2 VSCode with Zowe Explorer
Zowe Explorer is an open-source extension for VS Code that lets developers and system administrators
interact with z/OS mainframes.

• Introduction to Zowe Explorer
• Using Zowe Explorer
• Profiles in Zowe Explorer

– Secure Credentials
– Creating a New Profile
– Editing Profiles
– Deleting Profiles

• Summary

2.1 Introduction to Zowe Explorer
The Zowe Explorer extension modernizes the way developers and system administrators interact with z/OS
mainframes. Working with data sets and USS files from VS Code can be more convenient than using 3270
emulators. The extension provides the following benefits:

• Create, modify, rename, copy and upload data sets directly to a z/OS mainframe.
• Create, modify, rename and upload USS files directly to a z/OS mainframe.
• Streamlined process to access data sets, USS files and jobs.
• Easy interact with multiple z/OS systems

The Zowe Explorer can be installed into VS Code by searching the Extensions Marketplace inside VS Code
for “Zowe Explorer” and selecting install. To see more detailed instructions on installing this extension, refer
to “Installation of VSCode and Extensions”.

2.2 Using Zowe Explorer
Zowe Explorer allows you to work with data sets, Unix System Service (USS) files, and jobs.

Zowe Explorer offers the following functions:

Data sets

• Search for data sets matching desired filters and view their contents

• Download, edit, and upload existing PDS members

• Create and delete both data sets and data set members

• Interact with data sets from multiple systems simultaneously

• Rename data sets

• Copy data sets

• Submit JCL from a chosen data set member

USS Files

• View multiple Unix System Services (USS) files simultaneously

• Download, edit, and upload existing USS files

• Create and delete USS files and directories

• Interact with USS files from multiple systems simultaneously

• Rename USS files

Jobs

11

• View multiple jobs simultaneously

• Download spool content

• Interact with jobs from multiple systems simultaneously

For more information about Zowe Explorer and the different use cases, visit the marketplace

2.3 Profiles in Zowe Explorer
Profiles serve as a point-of-contact for Zowe Explorer and the Mainframe. Profiles contain the URL for the
API services that you want to connect to, and your credentials. The main profile information that you need
for Zowe Explorer is the z/OSMF Connection. If you have the Zowe Explorer installed, you can follow the
steps in this section to connect to the mainframe.

2.3.1 Secure Credentials

Zowe Explorer has a built in Secure Credential Store. This enables you to encrypt the credentials that are
stored in your machine, and as a result secure your connection to the Mainframe.

To enable this feature, follow these steps:

1. Click the Gear Icon at the bottom left and select Settings
2. Click User Settings > Extensions > Zowe Explorer Settings Look for the Zowe Security:

Credential Key field

3. Type Zowe-Plugin in the text box. This will trigger the Built-in Secure Credential Store.

Alternatively, to enable this feature by editing settings.json, hover over the gear icon and click “Copy Setting
as JSON”. You can then paste that to settings.json and update the value to Zowe Plugin.

Note: If you are using Zowe CLI and you’ve installed the Secure-Credential-Store Plugin, the steps to activate
it will still be the same.

2.3.2 Creating a New Profile

Follow these steps:

1. Navigate to the Zowe Explorer tree on the right side and look for the + sign.

12

https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe

2. Click on the + sign. A dialog box will appear and ask if you want to “Create a New Connection to
z/OS”.

3. Press enter or click on that selection.

4. Enter a Profile name in the “Connection Name” field.

5. Enter the URL and Port that you received by email when you registered for the COBOL Course. The
connection information that you need has a title of “IP address for VSCode extension”.

6. Enter your Username. This is also included in the email.

Note: You can leave this blank if you do not want to save your credentials in your machine. You will be
prompted for your username once you start using Zowe Explorer.

13

7. Enter your Password.

Note: You can leave this blank if you do not want to save your credentials in your machine. You will be
prompted for your username once you start using Zowe Explorer.

8. Select True/False if you want to accept or reject Self-Signed Certificates. For this course, please select
false.

If you are successful, you will receive this informational message:

2.3.3 Editing Profiles

The Zowe Explorer v1.5.0 release introduces profile editing. This allows you to revise your existing profile
information and continue using Zowe Explorer.

Follow these steps:

1. Add your profile to any of the Zowe Explorer Trees.

2. Click on the pencil icon to edit your profile. A dialog box opens displaying the current information in
your profile, which you can edit as required.

14

3. Edit the URL information if changes are required, or enter to confirm the information is still correct.

4. Edit your Username.

Note: You can leave this blank if you do not want to save your credentials in your machine. You will be
prompted for your username once you start using Zowe Explorer.

5. Edit your Password.

Note: You can leave this blank if you do not want to save your credentials in your machine. You will be
prompted for your username once you start using Zowe Explorer.

6. Edit your authorized connections

If you are successful, an information message will appear:

2.3.4 Deleting Profiles

The Zowe Explorer v1.5.0 release introduces the option to delete profiles. This allows you to permanently
delete unwanted profiles and clean up your files. You can delete profiles either using the command palette or
in the tree.

Follow these steps:

Command Palette:

1. Press CTRL+SHIFT+P or Click View > Command Palette to open the Command Palette

2. Type “Zowe: Delete”. This command allows you to permanently delete a profile.

15

3. Select the Profile that you want to delete.

4. Confirm that you want to delete your profile.

Once confirmed, the following message is displayed:

Zowe Explorer Tree:

1. Right click on the profile and select Delete Profile.

16

2. Confirm that you want to delete your profile.

3. Once confirmed, the following message is displayed:

2.4 Summary
In this section you have learned the basic features of the Zowe Explorer extension and how to create and
work with Zowe compatible zosmf profiles.

17

3 VSCode with Z Open Editor
In this chapter we will explain how to use the IBM Z Open Editor extension for VSCode and how using it
can help you develop COBOL source code in a feature rich environment.

• Introduction to the IBM Z Open Editor

– What is the IBM Z Open Editor?
– The role of the Language Server Protocol
– Installing the IBM Z Open Editor for VS Code

• Basic editing

– Known file extensions
– Margins
– Variable expansion
– Syntax highlighting

• Navigation of code

– Outline view
– Breadcrumb view
– Jump to declaration / reference

• Code-completion

– COBOL reserved word completion
– Variable completion
– CICS, MQ, DB2 API completion

• Refactoring code

– Renaming variables
– Handling errors

• Summary

3.1 Introduction to the IBM Z Open Editor
This section introduces the IBM Z Open Editor.

3.1.1 What is the IBM Z Open Editor?

The IBM Z Open Editor is a free extension for Visual Studio Code (VSCode) that provides language support
for COBOL, PL/I and JCL languages. Along with this language support it also provides content assistance
for applications that call CICS, MQ, IMS and DB2 APIs. The source code doesn’t even need to reside on
z/OS, it could be in a source code repository, locally in a file or on z/OS. Although this course focuses on
COBOL as a source language, a lot of the functions we will discuss will also apply to PL/I and JCL.

3.1.2 The role of the Language Server Protocol

Integrated development environments always want to provide a rich platform for all supported programming
languages, however, the proliferation of programming languages and the speed at which new editors reach
the market makes keeping pace difficult. Each editor would need to provide an editor specific plugin for each
language they wished to support, thus support for a certain language would differ between different editors.

Microsoft designed the Language Server Protocol (LSP) to act as a common description of how features like
auto-complete should be implemented for a specific language. Languages which have an implemented LSP
server can therefore be used within any editor that supports LSP. Many companies and the open source
community have collaborated to provide LSP servers for an array of different languages.

18

The language server protocol defines six broad capabilities that should be implemented for a language server
to be LSP compliant. These capabilities include code completion, hover, jump to definition, workspace
symbols, find references and diagnostics. The IBM Z Open Editor provides compliant language servers for
both the Enterprise Cobol and Enterprise PL/I for z/OS languages. In addition to being compliant, they
also provide additional capabilities that we will discuss further on.

Note: More information on Language Server Protocol implementations can be found at: https://langserver.org

3.1.3 Installing the IBM Z Open Editor for VS Code

The IBM Z Open Editor can be installed into VS code by searching the Extensions Marketplace inside
VSCode for “IBM Z Open Editor” and selecting install. Once installed, the default editor will be enabled
to provide a rich editing experience for COBOL, PL/I and JCL. There is no need to use a specific editor
for these languages. To see a more detailed instruction on installing this extension, refer to “Installation of
VSCode and extensions”.

3.2 Basic editing
For the rest of this chapter we will use the CBL0001 sample program to demonstrate how rich of an experience
editing COBOL in VSCode can be. So, let’s fire up VSCode, install IBM Z Open Editor (if it’s not already)
open up CBL0001 and get started.

3.2.1 Known file extensions

For VSCode to use the capabilities of the IBM Z Open Editor, it needs to know that the file we are editing
is in fact COBOL type. VSCode accomplishes this by comparing the location and name of the file being
opened against a list of known extensions to map the file to a known language. For COBOL the following
associations are used:

• *.COBOL*

• *.CBL*

• *.COB*

• *.COBCOPY*

• *.COPYBOOK*

• *.COPY*

These are applied to both local files and files held in a Partitioned Data Set or PDS on the mainframe, which
for simplicity you can think of as a folder. Thus, a PDS called:

Z99994 .COBOL

Or a file on the local file system called:

PROGA1 .COBOL

Will be assumed to be COBOL code. This information is stored in the global VSCode settings.json file that
can be accessed through VSCode preferences. This allows for a user to tailor VSCode’s known extensions to
a particular site naming convention.

3.2.2 Margins

The first thing you will notice when editing COBOL source code is that VSCode will have inserted five
vertical lines down the file. These lines segment each line of code into the areas reserved for sequence numbers,
comment / continuation characters, area A and area B. When coding without this basic aid I cannot recount
the number of times I have made a compilation error because I started coding in the wrong column. This

19

alone is a very useful aid to a new COBOL programmer. Move information about COBOL syntax, and in
particular the columns, will be discussed later

3.2.3 Variable expansion

As you browse through CBL0001 type CTRL + G to jump to a specific line of code. A small dialog will open
asking you for the line you wish to jump to, type 68 and press the enter key. VSCode will highlight that line
of code and navigate you directly to it, as shown in Figure 1.

Figure 1. Navigating to a specific line of code

If you hover your mouse over the ‘ACCT-NO-O’ field a pop up will appear displaying the declaration of that
variable, shown in Figure 2.

Figure 2. View declaration of variable

Since this field is a 05-level variable nested within a 01-level variable, the pop up shows the declaration of
the field as an eight-byte picture variable, the name of the parent structure and the file definition that it is
within. If you hold the CMD/Ctrl key while hovering over the field, then the pop up will additionally contain
the line of code where the variable is defined as well as the following three lines of code. These features can
be extremely helpful when analyzing existing code.

20

3.2.4 Syntax highlighting

The COBOL code that you are editing will also be highlighted to help you understand the different elements
of the COBOL language. Depending on the color theme that you have selected in VSCode, comments,
COBOL reserved words, literal values and variables will be colored differently allowing you to spot obvious
syntax issues early on before even submitting the code to a build.

3.3 Navigation of code
Although the code examples we are using in this section are fairly small, the code that you could be writing
could have hundreds or thousands of lines. Being able to understand the general structure of the source code
and being able to find your way around it without getting lost is a big advantage when editing COBOL.
Fortunately, there are some great features to help you out, which we will discuss next.

3.3.1 Outline view

Within the explorer side bar of VSCode, there is an outline view that will be populated whenever you are
editing a COBOL file. This view contains a collapsible look at each division, data structure and paragraph
within your code. This allows you to easily view the structure of the source code. Clicking on a particular
paragraph, division or data element will simultaneously move the editor to show that section of the code and
highlight it, depicted in Figure 3. This makes jumping to a specific part of the code very easy.

Figure 3. Outline view in VSCode

3.3.2 Breadcrumb view

Similarly, the breadcrumb view across the top of the editor can show where the current line of code exists
within the structure of the COBOL source code. As you navigate the source code in the editor, the breadcrumb
trail will automatically update to reflect where you are in the structure of the program and provides you a
mechanism to move to a different element of the code. Again, if you open CBL0001 in VSCode and jump
to line 36, this line is a declaration of the field USA-STATE within the structure ACCT-FIELDS, in the
FILE-SECTION of the DATA-DIVISION. Across the top of the editor the breadcrumb trail will show the
information displayed in Figure 4.

21

Figure 4. Breadcrumb trail in VSCode

Clicking on any of the items in the breadcrumb trail will highlight that element of the code in the editor,
quickly showing you the location of that element within the code. It will also show a view of the code in a
pop-up window, shown in Figure 5. , similar to the outline view previously discussed.

Figure 5. Pop-up view of code via breadcrumb selection

3.3.3 Jump to declaration / reference

As you browse through code you will come across COBOL PERFORM statements or variable references.
Often you will need to navigate to the definition of that paragraph or variable to follow the execution of
the code. At line 50 of CBL0001 we see a set of perform statements. Place the cursor within the name,
READ-RECORD, on line 51, right click and select Go to Definition . The editor then navigates to the
READ-RECORD paragraph on line 62. Instead of the right click, the same function can be reached by using
the F12 key.

“Go to References” does the reverse of this operation and allows you to navigate from the definition of a

22

paragraph or variable to all the places within the application that reference that paragraph or variable. To
demonstrate this, navigate to line 62 of CBL0001, which again is the declaration of the READ-RECORD
paragraph. To see all of the places where this paragraph is called, right click and select Go to References
, or hit the key combination SHIFT+F12 . This will summon a new pop up dialog which shows all the
references to this paragraph in the code, shown in Figure 6.

Note: If SHIFT+F12 does not work for your machine, you may need to use the key combination, Fn+F12
instead.

Figure 6. Finding paragraph/variable references in VSCode

3.4 Code-completion
Code completion isn’t exactly a new concept in most IDEs. For example, the Eclipse editor has provided
auto-completion for Java APIs for a long time. The same key combination, CTRL+SPACE , triggers this
auto-completion function while you are coding and can be used to help guide you through COBOL syntax
and CICS, IMS API calls.

3.4.1 COBOL reserved word completion

As you are typing a COBOL reserved word, you can type CTRL+SPACE and the IBM Z Open Editor will
present, in a pop-up, a list of possible COBOL reserved words that you might be trying to use. Using the
cursor keys or the mouse allows you to select the correct recommended keyword and press enter to select it
and the rest of the reserved word will be entered for you, aka auto-completed!

3.4.2 Variable completion

The same technique can be applied to variable completion. This can be particularly useful when you are
referencing a variable that exists multiple times within different structures. In these cases, auto-completion can
help you identify the variable you want to use. As an example, create a new line within the WRITE-RECORD
paragraph. On the new line, enter the code MOVE ACCT-BA and then press CTRL+SPACE to invoke code
auto-completion. You should see a pop up similar to the one shown in Figure 7. below.

23

Figure 7. Auto-completion in VSCode

You can see that not only is the variable ACCT-BALANCE prompted as a potential candidate, but it also
presents ACCT_BALANCE IN ACCT-FIELDS.

3.4.3 CICS, MQ, DB2 API completion

The auto-completion of variables also extends to the CICS and DB2 APIs, known as EXEC CICS and EXEC
SQL statements. Although COBOL programming for DB2 and CICS is not a primary focus here, note that
if you find yourself programming for either of these APIs that the capability is available.

3.5 Refactoring code
Working with source code is seldom just about the initial creation, during a programs life cycle it will be
changed and re-worked we often call this work refactoring. This section explores renaming variables and
handling errors.

3.5.1 Renaming variables

During maintenance of existing code, you might need to refactor variable names or paragraph names. Doing
this manually can be a painful process, as you probably need to update both the original declaration and
all the references within the source code. Fortunately, there is a function for that, let’s work through an
example. Back in CBL0001 hit CTRL+G to bring up the go to line function and go to line 29. This is
the declaration of the variable ACCT-NO. Right click on the variable and select “Find All References”.
From this we can see that apart from the declaration, the variable is also referenced on line 68. So, if we

24

rename the variable, we probably need to update this reference as well. To perform the rename, ensure that
the cursor is on the variable and then press SHIFT/Fn+F2 . This will bring up a small pop-up asking you
to provide a new variable name, as shown in Figure 8. Enter ACCT-NO-TEST and press enter .

Figure 8. Renaming variables

You will note that both the declaration of the variable and the reference on line 68 have been updated to the
new value. As stated previously, the same process also works for paragraph names. For example, go ahead
and refactor the name of the paragraph READ-RECORD to be READ-NEW-RECORD.

3.5.2 Handling errors

The IBM Z Open Editor plugin also provides a level of syntax checking for local source code. Although not
as thorough as the compiler, it is a method of quickly identifying basic errors in your code before submitting
it for compilation. To demonstrate, let’s create an error and then see how the editor shows it to us. First,
open the problems view by selecting View and then Problems from the editor menu. The problems view
should open at the bottom of the window, as depicted in Figure 9.

Figure 9. Problems view

Now we need to introduce an error into the code. After line 68, add the line:

MOVE ACCT-NO TO ACCT-N-0.

Note that this line incorrectly identifies the second variable, which doesn’t exist. Once entering that line, you
will notice that the invalid variable has been underlined in red to highlight it as an error. Also, the problems
view has a new error. Clicking on the error will highlight the line of code at fault in the editor, shown in
Figure 10. , allowing you to view the error directly.

25

Figure 10. Highlighting error in source code

Now that you see where the error is located, it can now be corrected. As soon as the error has been rectified,
the problem disappears from the problem view.

3.6 Summary
In this chapter you have been able to go through some of the editing features of the Z Open Editor for
VSCode. These capabilities make editing COBOL, PL/Iand JCL a lot friendlier and easier than some of the
other editors in the market.

26

4 VS Code with Code4z Open-Source Extension Package
This section introduces the Code4z extension package, in particular the COBOL Language Support extension.

• What is Code4z?
• Known File Extensions
• Syntax Highlighting and Coloring
• Syntax and Semantic Check
• Navigation of Code

– Go To Definition
– Find All References

• Copybook Support
• Autocomplete
• Summary

4.1 What is Code4z?
Code4z is an all-in-one, open-source mainframe extension package for Visual Studio Code. The Code4z
package contains extensions which provide language support for COBOL and High Level Assembler language,
a debugger for COBOL programs, as well as tools which enable developers to access mainframe data sets and
CA Endevor code repositories using the Visual Studio Code interface. This guide focuses on the COBOL
Language Support extension. The Zowe Explorer extension is also included in the Code4z package.

The COBOL Language Support extension leverages the Language Server Protocol to provide autocomplete,
highlighting, and diagnostic features for COBOL code. Together with Zowe Explorer, you can load COBOL
code from a mainframe data set, and edit it leveraging the LSP features of the extension. Once you finish
editing, you can save the file back on the mainframe, and store a copy locally.

The Code4z Extension Pack can be installed into VS Code by searching the Extensions Marketplace inside
VS Code for “Code4z” and selecting install. The extension pack contains a number of extensions that can
be leveraged when working with the mainframe, including the COBOL Language Support extension which
provides similar functionality to the Z Open Editor extension discussed earlier. Therefore, ensure only one
of these two extensions is enabled. Other extensions included in the pack will work with either COBOL
Language Support or Z Open Editor. To see more detailed instructions on installing this extension, refer to
“Installation of VSCode and Extensions”.

4.2 Known File Extensions
Code4z recognizes files with the extensions .COB and .CBL as COBOL files. This applies to both local files
and files held in a PDS on the mainframe. COBOL Language Support features are automatically enabled
when you open any file with an extension identifying it as a COBOL file.

4.3 Syntax Highlighting and Coloring
The COBOL Language Support extension enables coloring of keywords, paragraphs, and variables in different
colors to make the code easier to navigate.

4.4 Syntax and Semantic Check
The COBOL Language Support extension checks for mistakes and errors in COBOL code. The syntax check
feature reviews the whole content of the code, highlights errors and suggests fixes.

27

Figure 1. The syntax and semantic check feature highlights an error.

4.5 Navigation of Code
The COBOL Language Support extension enables several features for ease of navigation through code.

4.5.1 Go To Definition

While your cursor is placed on a variable or paragraph name, you can press F12 or CTRL+click to use the
Go To Definition functionality to display the point in the code where the variable or paragraph is defined.

Figure 2. Go To Definition shows the point at which the USER-STREET variable is first defined.

4.5.2 Find All References

The Find All References functionality (SHIFT+ALT+F12) highlights all references to a variable or
paragraph and displays them in a list in the sidebar, so that you can easily navigate between them.

Figure 3. Find All References lists all references to the USER-STREET variable in the code.

4.6 Copybook Support
Copybooks are pieces of source code stored in separate data sets which are referenced in a program. The
COBOL Language Support extension enables you to download all copybooks referenced in your program
from the mainframe to a folder in your workspace. In order for this feature to work, you need to set up and

28

configure a Zowe CLI zosmf profile. You can also enable support for copybooks stored locally in folders in
your workspace. This is useful when working with a COBOL project stored in a Github repository.

The COBOL Language Support extension helps to ensure that copybooks called in the code remain compatible
through semantic analysis of keywords, variables, and paragraphs within copybooks, and ensures the
consistency of code by defining variables and paragraphs across copybooks. The extension also helps to
protect against unwanted errors caused by recursive or missing copybooks.

The Go To Definition and Find All References functionalities are extended to work for occurrences of
variables and paragraphs from copybooks called in the program as well as from the program itself. You can
also use the Go To Definition feature on a copybook name in order to open it.

4.7 Autocomplete
The COBOL Language Support extension provides live suggestions while you type for COBOL keywords,
as well as variables and paragraphs which are already referenced in the code or in copybooks used by the
program.

Figure 4. Autocomplete lists possible variables and keywords beginning with the typed string in a list.

4.8 Summary
In this chapter you have been introduced to all the COBOL language support features of the Code4z package
of open-source extensions for VS Code.

29

5 Zowe CLI and Zowe CLI Plug-ins
In this chapter we will explain what a CLI is and why you would use it, how to use Zowe CLI interactively,
how to abstract CLI commands into useful scripts, and how Zowe CLI enables the use of familiar open source
tooling while developing COBOL applications on the mainframe.

• What is a CLI and why would you use it?

• What is Zowe CLI?

• Zowe CLI interactive use

– Installing Zowe CLI
– Interactive Help
– Zowe Profiles
– Interacting with z/OS Data Sets
– Interacting with z/OS Jobs

• Automating tasks using Zowe CLI

– Automated Job Submission
– Using Other Programming Languages and Continuous Integration
– Additional Examples

• The world of modern open source tooling

• Summary

5.1 What is a CLI and why would you use it?
CLI stands for Command Line Interface. It is a program that allows for user interaction through text based
input. In the early days of computing, command line interfaces were the only means to interact with operating
systems. The invention of the mouse and development of graphical user interfaces led to the experience we
are familiar with today. Well-designed GUIs certainly yield an improved interactive experience. However,
CLIs are still heavily used today and are very powerful. Windows shell and bash are common examples of
terminals where command line tools are run interactively.

If well-designed GUIs yield an improved interactive experience, why would you use a CLI? Simply put,
automation. Command line interfaces can be used interactively allowing for quick exploration of available
commands. They are also usually self-guided and some even offer modern help displays by launching content
in a browser. But, they are also programmatic interfaces where command sequences and tasks can be easily
abstracted into scripts.

5.2 What is Zowe CLI?
Zowe CLI is an open source CLI for the mainframe. It is a tool that can be run on Windows, Linux, and
Mac offering a means to interact with the mainframe from an environment where modern open source tooling
is available. Cloud platforms like Amazon Web Services, Azure, and Google Cloud Platform all provide
heavily used CLIs. The Zowe CLI helps make interacting with the mainframe like interacting with other
cloud services.

At its core, Zowe CLI provides remote interaction with z/OS data sets & jobs, Unix System Services files,
TSO and Console commands, and provisioning services. Zowe CLI is also an extensible technology and
numerous plug-ins exist that extend its reach to z/OS subsystems and vendor software.

Zowe CLI is a bridge tool between distributed systems and the mainframe. Pick your favorite language or
open source tool and leverage it for mainframe development with the assistance of the Zowe CLI. Want to
develop automation in Python? Want to write tests in Node? Want to run Jenkins pipelines for continuous
integration? Want to use open source testing frameworks like Mocha or Facebook’s Jest? Want to leverage
code quality tools like SonarQube? Go for it!

30

CLIs are useful for automating repeated tasks. For mainframe COBOL apps, Zowe CLI can help you automate
your build, deployment, and testing processes. Check out this blog for more info and the sample code that
made it possible! Zowe CLI can also help you to automate administrative tasks.

Most IDEs have integrated terminals as well so the CLI can be leveraged from your favorite distributed
development environment, including VS Code!

5.3 Zowe CLI interactive use
The Zowe CLI can be leveraged for quick exploration of z/OS services as well as issuing commands that are
not yet available in your IDE of choice. Before developing automation, it is common to first accomplish a
commonly repeated task from the CLI interactively.

5.3.1 Installing Zowe CLI

The Zowe CLI is a node package and is one of over 1.2 million node packages available on the public npm
registry. After Node.js and npm are installed on the client machine, the core CLI can be installed by
simply issuing npm install -g @zowe/cli@zowe-v1-lts. There is an alternative installation method if
your workstation does not have access to the public registry. More details on installing Zowe CLI and Zowe
CLI plug-ins are provided in a future section titled “Installation of Zowe CLI and plug-ins”.

5.3.2 Interactive Help

To get started, you can simply open a terminal and issue zowe. This will yield the top level help.

Figure 1. Zowe CLI Help

31

https://medium.com/zowe/continuous-integration-for-a-mainframe-app-800657e84e96

In the example above, multiple extensions are installed. The structure of commands is zowe <group>
<action> <object> followed by various parameters and options specific to the command. For example,
a valid command is zowe files list data-set "HLQ.*". This command will list data-sets matching a
pattern of "HLQ.*". You can append -h to any command to find out more information. Frequently referring
to the help can be difficult and time consuming so if your environment has access to a web browser, simply
append --help-web or --hw to any command to launch interactive web help.

Figure 2. Zowe CLI Web Help

Don’t have the CLI installed yet? You can also check out a copy of the web help for the core Zowe CLI and
Zowe plug-ins here.

5.3.3 Zowe Profiles

Zowe client technologies like Zowe CLI and the Zowe Explorer VS Code Extension store connection information
in files commonly known as profiles. This provides convenience as after profiles for services are created,
users do not have to constantly provide this information. For the secure storage of credentials, there is the
Secure Credential Store plug-in which is discussed more in a later section titled “Installation of Zowe CLI
and plug-ins”. The Secure Credential Store provides a means to store creds in the operating system’s secure
credential vault.

When creating profiles you can also specify the prompt* keyword to be prompted for your username and
password so they will be masked on the command line. Figure 3 shows a sample command to create a zosmf
profile. This will eliminate the need to provide these details on future commands.

Figure 3. Zowe CLI z/OSMF Profile Creation Command

32

https://docs.zowe.org/stable/web_help/index.html

5.3.4 Interacting with z/OS Data Sets

Zowe CLI provides a significant suite of z/OS data set interaction functionality. See the following figures for
details on available actions and a sample list command.

Figure 4. Zowe CLI zos-files actions

Figure 5. Sample Zowe CLI zos-files list ds command

5.3.5 Interacting with z/OS Jobs

Zowe CLI provides a significant suite of z/OS jobs interaction functionality. See the following figures for
details on available actions and a sample job submission command.

Figure 6. Zowe CLI zos-jobs actions

33

Figure 7. Sample Zowe CLI zos-jobs submit ds command

5.4 Automating tasks using Zowe CLI
Running commands interactively is a great way to learn the capabilities of the Zowe CLI. However, creating
custom automation for your commonly repeated tasks and making use of valuable development tooling is
where significant value lies. For COBOL development, significant time can be spent reviewing compiler
output and testing programs. These repetitive tasks are excellent candidates for automation.

5.4.1 Automated Job Submission

Let’s investigate automating submitting a job and verifying the return code is 0. Of course, we could also
parse the spool output for specific messages of interest but we will keep it simple for now. For this sample,
we will leverage Node.js to develop a new automation suite. To start, I will create a package.json file to make
it easy for others to manage and install the project. It will contain the list of dependencies for my project as
well as the automation tasks I will develop. A quick way to create a package.json is to issue npm init and
answer the prompts. Once created I will add a submitJob task. You can add whatever automation you want
here. My final package.json is shown in the next figure. You can learn more about package.json files here.

Figure 8. Sample package.json

Then I will create a config.json file to store all the variables I may wish to change for my project. In this case,
we will set the job to submit and the maximum allowable return code for that job.

Figure 9. Sample config.json

Next we will write our automation. The Zowe CLI was built with scripting in mind and can output responses
in JSON format which can be easily parsed.

34

https://docs.npmjs.com/creating-a-package-json-file

Figure 10. Sample Zowe CLI response format JSON output

Now, instead of issuing this command and reviewing it to see if the retcode is less than or equal to 4, we
want to automate it. See the implementation in a node script below.

Figure 11. Sample code to submit job and verify output is less than or equal to a maximum allowable RC

I had to make the investment to write this automation but for future job submissions I can simply issue
npm run submitJob. IDEs like VS Code can visualize these tasks making my commonly repeated tasks as
easy as clicking a button :). This job could compile, link, and/or run a COBOL program.

35

Figure 12. Vizualization of npm script and sample run

More advanced code automating the compilation, deployment to test environment, and testing of a COBOL
CICS application is described in this blog.

5.4.2 Using Other Programming Languages and Continuous Integration

Another good example of automating tasks using Zowe CLI is when you want to integrate other programming
languages into your COBOL development. Similar to 3.4.1, you can use other languages such as Typescript
to write a COBOL program generator and use Zowe CLI to create a “one-click” process for creating your
program. The figure below is a representation of that “one-click” automated process where several tasks are
executed such as creating your COBOL program, uploading it in mainframe, compiling it and running your
JCL to test it.

Figure 13. “One Click” COBOL build process

36

https://medium.com/zowe/continuous-integration-for-a-mainframe-app-800657e84e96

You can then level-up this process by leveraging a CI/CD pipeline. What is a CI/CD pipeline? It is an
automated way of building, testing, and deploying your application and you can do the same with your
COBOL development. The figure below shows the pipeline for the same automated tasks that we did earlier.

Figure 14. CI/CD pipeline of the “one click” COBOL build process

To know more about this topic, check this out.

5.4.3 Additional Examples

If you are looking for an example on how to use Zowe Explorer and Zowe CLI with Db2 Stored Procedures,
check out this blog.

If you are interested in using open source tools in your development, you can review this blog where it talks
about using Zowe CLI to leverage static code analysis tools when developing COBOL applications.

For additional blogs and articles on leveraging Zowe technologies, check out https://medium.com/zowe/user
s/home.

5.5 The world of modern open source tooling
We have only scratched the surface of using modern tools and languages for mainframe development and
incorporating mainframe applications into enterprise DevOps pipelines. As a bridge tool, the Zowe CLI
enables the use of a plethora of tools being developed by an enormous community for mainframe development.
If you are new to mainframe, hopefully this offers some familiarity as you transition into this space. If you
are an experienced mainframer, hopefully you find time to give some of these available technologies a try to
see if they can help you.

5.6 Summary
As both a user and programmatic interface, command line interfaces offer significant value in simplifying
complex repeatable processes into single tasks. CLIs are commonly used when developing on popular cloud
platforms like Amazon Web Services. The Zowe CLI is the CLI for the mainframe that has been extended via
numerous plug-ins. Zowe CLI acts as a bridge tool enabling the use of distributed development tooling while
working with mainframe applications. Numerous resources and articles are available for using Zowe CLI to
create custom automation, build CI pipelines, and incorporate static analysis into your COBOL development
processes. Development tooling created by the distributed open source community can now be effectively
leveraged for mainframe development.

37

https://medium.com/@jessielaine.punongbayan/how-i-used-typescript-to-generate-my-cobol-programs-a2a180209148
https://www.idug.org/p/bl/et/blogid=278&blogaid=1007?es_id=c5a317e73e
https://medium.com/zowe/how-to-write-cleaner-and-safer-z-os-code-with-zowe-cli-and-sonarqube-6afb283348f9
https://medium.com/zowe/users/home
https://medium.com/zowe/users/home

6 Installation of VSCode and extensions
This chapter covers all aspects of download and installation of Visual Studio (VS) Code and any prerequisites
that are needed. It includes:

• Install prerequisites

– Install node.js
– Install Java SDK

• Install VSCode

• Install VSCode extensions

– Zowe Explorer
– IBM Z Open Editor
– Code4z

• Summary

6.1 Install prerequisites
This section will cover the necessary steps and information to download and install the prerequisites needed
for the subsequent labs within this book. This software is needed for one of more of the applications we will
be utilizing in our labs throughout the book. The prerequisites include:

• Install node.js

• Install Java SDK

6.1.1 Install node.js

1. Check for node.js installation and verify that the version number is v8 or higher.

Open your workstation’s version of the command prompt (called Terminal on Mac OS X). Once the
command prompt is open, use the command in Example 1. to check if your workstation currently has a
version of node.js installed.

C:\ Users\User > node -v

V12 .16.1

Example 1. Node.js version

If you do not see a version number after you submit the command, you do not have node.js installed, or if it
shows a version less than v8, you should continue following these instructions. If you do see a version number
and it is v8 or higher, you can move on to section Install Java SDK.

2. If node.js version is less than v8, or node isn’t installed at all.

Updating node.js to the appropriate version number is a relatively simple process because the installer
takes care of most of the “heavy lifting”. All you will need to do is visit the Node.js download site,
provided below and follow the download and installation instructions for your specific workstation
platform. Do this same process if you do not already have node.js installed.

https://nodejs.org/en/download/

This process will install the latest versions of Node.js and the node package manager (npm) and overwrite
any older version files in your system. This removes the step of needing to manually uninstall the previous
versions beforehand.

3. Once completed, verify the installation and proper version number, as shown previously in Example 1.

38

https://nodejs.org/en/download/

Note : The version numbers in our examples are provided purely for reference and may not reflect the latest
versions of the software.

6.1.2 Install Java SDK

1. Check for Java installation and verify that the version number is v8 or higher.

Open your workstation’s version of the command prompt, if not already open. Once the command
prompt is open, use the command in Example 2. to check if your workstation currently has a version of
Java installed. Java SDK 8 is the preferred version for these labs, however, any versions higher than
that will suffice.

C:\ Users\User > java -version

java version "1.8.0 _241"

Java(TM) SE Runtime Environment (build 1.8.0 _241 -b07)

Java HotSpot (TM) 64- Bit Server VM (build 25.241 - b07 , mixed mode)

Example 2. Java version

If you do not see a version number after you submit the command, you do not have Java installed or if it
shows a version less than v8, you should continue following these instructions. The display format of the
version number for Java is slightly different than what is displayed for node.js. With Java, the second value in
the displayed version number, i.e. the “8” in Example 2. , is the version number. So, our example is showing
Java SDK version 8. If you do see a version number and it is v8 or higher, you can move on to section Install
VSCode.

2. If your version of Java displayed is less than v8, you need to uninstall the current version on your
workstation and reinstall the correct version. Follow the link below to uninstall instructions that
represent your workstation operating system (OS).

-Linux:

https://www.java.com/en/download/help/linux_uninstall.xml

-Mac:

https://www.java.com/en/download/help/mac_uninstall_java.xml

-Windows:

https://www.java.com/en/download/help/uninstall_java.xml

3. Once Java is uninstalled from your workstation, you can click the Java JDK 8 download link below and
follow the installation instructions for your specific OS.

https://www.oracle.com/java/technologies/javase-jdk8-downloads.html

4. Verify the installation and proper version number as shown in Example 2.

Note : You will be prompted to register a new Oracle account in order to download the installation file,
please do so. If you have an existing account, you may use that to log in and continue.

6.2 Install VSCode
If you do not already have VSCode installed on your workstation, please do so now by following the download
and installation instructions at the link below:

https://code.visualstudio.com/download

39

https://www.java.com/en/download/help/linux_uninstall.xml
https://www.java.com/en/download/help/mac_uninstall_java.xml
https://www.java.com/en/download/help/uninstall_java.xml
https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
https://code.visualstudio.com/download

Figure 1. VSCode download site

Note : Be sure to select the correct installation file for your workstations respective OS, shown in Figure 1.

6.3 Install VSCode extensions
This section introduces two VSCode extensions, Zowe Explorer and IBM Z Open Editor listed in Figure 2. ,
and instructions on how to install them.

Figure 2. VSCode required extensions

6.3.1 Zowe Explorer

Zowe is a new, and the first open source framework for z/OS and provides solutions for development and
operations teams to securely manage, control, script and develop on the mainframe like any other cloud
platform. Out of the box, the Zowe Explorer provides a lot of functionality allowing z/OS developers access
to jobs, datasets and (USS) files on a z/OS server. Backed by the Zowe CLI and z/OSMF, developers now
have powerful features that makes it easy to work with z/OS within the familiar VSCode environment. This
extension can be used to edit COBOL and PL/I files opened on z/OS MVS™ and USS using the Zowe
extension’s Data Sets and USS views. It can even run JCL and lets you browse job spool files. For more
information on Zowe Explorer and its interaction with z/OS please visit:

https://ibm.github.io/zopeneditor-about/Docs/zowe_interactwithzos.html

6.3.1.1 Install Zowe Explorer Open VSCode and in the left side tool menu select Extensions. From
there, in the “Search Extensions in Marketplace” search field, type Zowe Explorer. Search results will begin
populating, select “Zowe Explorer” and click install, depicted in Figure 3.

40

https://ibm.github.io/zopeneditor-about/Docs/zowe_interactwithzos.html

Figure 3. Install Zowe Explorer in VSCode

The Zowe communinity have a number of on-line video that walk through the steps required to install,
configure and operate the Zowe Explorer, see Zowe Explorer VSC Extension (part 1).

6.3.2 IBM Z Open Editor

IBM Z Open Editor brings COBOL and PL/I language support to Microsoft VSCode. It is one of the several
next generation capabilities for an open development experience for z/OS®. It also works in association with
the Zowe Explorer plugin. For more information on IBM Z Open Editor, please visit:

https://ibm.github.io/zopeneditor-about/Docs/introduction.html#key-capabilities

6.3.2.1 Install IBM Z Open Editor Open VSCode and in the left side tool menu select Extensions.
From there, in the “Search Extensions in Marketplace” search field, type IBM Z Open Editor. Search results
will begin populating, select " IBM Z Open Editor " and click install, depicted in Figure 4.

41

http://www.youtube.com/watch?v=G_WCsFZIWt4&t=0m38s
https://ibm.github.io/zopeneditor-about/Docs/introduction.html#key-capabilities

Figure 4. Install IBM Z Open Editor in VSCode

Note : There may be some limitations with IBM Z Open Editor if running a 32-bit Java version on Windows.

6.3.3 Code4z

Code4z is an all-in-one, open-source mainframe extension package for developers working with z/OS appli-
cations, suitable for all levels of mainframe experience, even beginners. Mainframe application developers
can use the Code4z package for a modern, familiar, and seamless experience, which helps to overcome some
developers’ reservations or concerns about the traditional mainframe user experience. To find out more about
Code4z, please visit https://github.com/BroadcomMFD/code4z.

6.3.3.1 Install Code4z Open VSCode and in the left side tool menu select Extensions. From there, in
the “Search Extensions in Marketplace” search field, type Code4z. Search results will begin populating, select
" Code4z " and click install.

The extension pack contains a number of extensions that can be leveraged when working with the mainframe,
including the COBOL Language Support extension which provides similar functionality to the Z Open Editor
extension. Therefore, ensure only one of these extensions is enabled. Extensions can be disabled within VS
Code by locating the extension in the Extensions menu, clicking the settings gear, and selecting Disable.
Other extensions included in the Code4z pack will work with either COBOL Language Support or Z Open
Editor.

6.4 Summary
In this chapter you have been introduced to VSCode and some of the extension tools available to it. We have
walked through the process of installing the pre-requisite software, Node.js and Java SDK, as well as VSCode,
Zowe Explorer, IBM Z Open Editor and Code4z. You have also been briefly introduced to the utility of these
extensions in VSCode. In the subsequent chapters we will delve deeper into how and when to use them and
get some practice through lab assignments.

42

https://github.com/BroadcomMFD/code4z

7 Installation of Zowe CLI and Plug-ins
This chapter covers all aspects of the download and installation of Zowe CLI and Zowe CLI plug-ins.

• Install prerequisites - Node.js

• Install Zowe CLI

– Public npm Registry
– Package from Zowe.org

• Install Zowe CLI Plug-ins

– Public npm Registry
– Package from Zowe.org

• Summary

7.1 Install prerequisites - Node.js
Before installing Zowe CLI, please ensure an LTS version of Node v8.0 or higher is installed. Please refer
back to the section titled “Install Node.js” if you have not already completed it. Please also verify that you
have a version of Node Package Manager (npm) that is compatible with your version of Node.js. For a list
of compatible versions, see https://nodejs.org/en/download/releases/. npm is included with the Node.js
installation. Issue the command npm --version to view the version of npm that is installed.

7.2 Install Zowe CLI
There are two recommended methods for installing the Zowe CLI. If you have access to the public npm registry
from your workstation, we recommend using that installation method as pulling updates is seamless. If you
do not have access to this registry, we recommend downloading the package from zowe.org and installing
from the bundled package.

7.2.1 Install from Public npm Registry

Issue the following command in your terminal (e.g. Command Prompt or if you are using VS Code, Terminal
-> New Terminal):

npm install -g @zowe/cli@zowe -v1 -lts

If the command returns an EACCESS error, refer to Resolving EACCESS permissions errors when installing
packages globally in the npm documentation. If other issues are encountered in your environment, please
review known Zowe CLI issues for solutions.

We also highly recommend installing the Secure Credential Store plug-in before using the CLI. The Secure
Credential Store Plug-in for Zowe CLI lets you store your credentials securely in the default credential
manager in your computer’s operating system. On Linux, libsecret will need to be installed.

If running Linux, please run the following command for your Linux distribution:

• Debian/Ubuntu: sudo apt-get install libsecret-1-dev
• Red Hat-based: sudo yum install libsecret-devel
• Arch Linux: sudo pacman -S libsecret

To install the Secure Credential Store Plug-in for Zowe CLI, issue the following command:

zowe plugins install
@zowe/secure -credential -store -for -zowe -cli@zowe -v1 -lts

User profiles, which contain connection information for interacting with various z/OS services, created after
installing the plug-in will automatically store your credentials securely.

43

https://nodejs.org/en/download/releases/
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.zowe.org/stable/troubleshoot/cli/known-cli.html#known-zowe-cli-issues

To securely store credentials in existing user profiles (profiles that you created prior to installing the SCS
plug-in), issue the following command:

zowe scs update

7.2.2 Install from Bundled Package

Navigate to Zowe.org Downloads and click the CLI Core button to download the core package which
includes Zowe CLI and the Secure Credential Store plug-in. After accepting the EULA for Zowe, a pack-
age named zowe-cli-package-v.r.m.zip will be downloaded to your machine. Unzip the contents of
zowe-cli-package-v.r.m.zip to a preferred location on your machine.

Open your terminal (e.g. Command Prompt or if you are using VS Code, Terminal -> New Terminal), change
your working directory to wherever you unzipped the contents, and issue the following command:

npm install -g zowe -cli.tgz

If the command returns an EACCESS error, refer to Resolving EACCESS permissions errors when installing
packages globally in the npm documentation. If other issues are encountered in your environment, please
review known Zowe CLI issues for solutions.

The highly recommended Secure Credential Store Plug-in for Zowe CLI lets you store your credentials securely
in the default credential manager in your computer’s operating system. On Linux, libsecret will need to be
installed.

If running Linux, please run the following command for your Linux distribution:

• Debian/Ubuntu: sudo apt-get install libsecret-1-dev
• Red Hat-based: sudo yum install libsecret-devel
• Arch Linux: sudo pacman -S libsecret

To install the Secure Credential Store Plug-in for Zowe CLI, issue the following command from where you
unzipped the core CLI package contents:

zowe plugins install secure -credential -store -for -zowe -cli.tgz

User profiles, which contain connection information for interacting with various z/OS services, created after
installing the plug-in will automatically store your credentials securely.

To securely store credentials in existing user profiles (profiles that you created prior to installing the SCS
plug-in), issue the following command:

zowe scs update

7.3 Install Zowe CLI Plug-ins
Zowe CLI is an extendable technology that can be enhanced by installing plug-ins. Zowe offers a number of
plug-ins. At the time of this writing, these include plug-ins for CICS, Db2, FTP, IMS, and MQ. There are
also many vendor plug-ins, many of which are available on the public registry. At the time of this writing,
these include plug-ins for CA Endevor, CA Endevor Bridge for Git, CA File Master Plus, CA OPS/MVS,
CA View, IBM CICS Bundle Generation and Deployment, and IBM z/OS Connect EE.

7.3.1 Install from Public npm Registry

To install a Zowe CLI plug-in from the registry, simply locate the plug-in you wish to install,
e.g. @zowe/cics-for-zowe-cli, find the distribution tag for the distribution you want to install,
e.g. zowe-v1-lts, and issue the following command:

zowe plugins install <name >@<distTag >

44

https://www.zowe.org/#download
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.zowe.org/stable/troubleshoot/cli/known-cli.html#known-zowe-cli-issues
https://docs.zowe.org/stable/user-guide/cli-extending.html
https://www.npmjs.com/package/@zowe/cics-for-zowe-cli
https://www.npmjs.com/package/@zowe/db2-for-zowe-cli
https://www.npmjs.com/package/@zowe/zos-ftp-for-zowe-cli
https://www.npmjs.com/package/@zowe/ims-for-zowe-cli
https://www.npmjs.com/package/@zowe/mq-for-zowe-cli
https://www.npmjs.com/search?q=zowe-cli
https://www.npmjs.com/package/@broadcom/endevor-for-zowe-cli
https://www.npmjs.com/package/@broadcom/endevor-bridge-for-git-for-zowe-cli
https://www.npmjs.com/package/@broadcom/file-master-plus-for-zowe-cli
https://www.npmjs.com/package/@broadcom/ops-for-zowe-cli
https://www.npmjs.com/package/@broadcom/caview-for-zowe-cli
https://www.npmjs.com/package/zowe-cli-cics-deploy-plugin
https://www.npmjs.com/package/@zosconnect/zosconnect-zowe-cli

For example,

zowe plugins install @zowe/cics -for -zowe -cli@zowe -v1 -lts

Multiple plug-ins can be installed in a single command. For example, to install all Zowe CLI plug-ins available
from the Zowe organization, you could issue:

zowe plugins install @zowe/cics -for -zowe -cli@zowe -v1 -lts
@zowe/ims -for -zowe -cli@zowe -v1 -lts @zowe/mq -for -zowe -cli@zowe -v1 -lts
@zowe/zos -ftp -for -zowe -cli@zowe -v1 -lts
@zowe/db2 -for -zowe -cli@zowe -v1 -lts

Vendor plug-ins on the registry are installed in the same way. For example, to install the CA Endevor plug-in,
you would issue

zowe plugins install @broadcom /endevor -for -zowe -cli@zowe -v1 -lts

7.3.2 Install from Bundled Package

Navigate to Zowe.org Downloads and click the CLI Plugins button to download the package which in-
cludes all Zowe CLI plug-ins for the Zowe organization. After accepting the EULA for Zowe, a pack-
age named zowe-cli-plugins-v.r.m.zip will be downloaded to your machine. Unzip the contents of
zowe-cli-plugins-v.r.m.zip to a preferred location on your machine. You can select which plug-ins you
want to install. The IBM Db2 plug-in requires additional configuration when installing from a local package.
To install all plug-ins you can issue:

zowe plugins install cics -for -zowe -cli.tgz zos -ftp -for -zowe -cli.tgz
ims -for -zowe -cli.tgz mq -for -zowe -cli.tgz db2 -for -zowe -cli.tgz

For offline installation of vendor plug-ins, please reach out to the specific vendor for details.

7.4 Summary
In this chapter we walked through the process of installing the prerequisite software, Node.js and npm, as
well as Zowe CLI and various plug-ins.

45

https://www.zowe.org/#download
https://docs.zowe.org/stable/user-guide/cli-db2plugin.html#installing-from-a-local-package

Part 2 - Learning COBOL

8 Basic COBOL
This chapter introduces the basics of COBOL syntax. It then demonstrates how to view and run a basic
COBOL program in VSCode.

• COBOL characteristics

– Enterprise COBOL
– Chapter objectives

• What must a novice COBOL programmer know to be an experienced COBOL program-
mer?

– What are the coding rules and the reference format?
– What is the structure of COBOL?
– What are COBOL reserved words?
– What is a COBOL statement?
– What is the meaning of a scope terminator?
– What is a COBOL sentence?
– What is a COBOL paragraph?
– What is a COBOL section?

• COBOL Divisions

– COBOL Divisions structure
– What are the four Divisions of COBOL?

• PROCEDURE DIVISION explained

• Additional information

– Professional manuals
– Learn more about recent COBOL advancements

• Lab

• Lab - Zowe CLI & Automation

– Zowe CLI - Interactive Usage
– Zowe CLI - Programmatic Usage

8.1 COBOL characteristics
COBOL is an English-like computer language enabling COBOL source code to be easier to read, understand,
and maintain. Learning to program in COBOL includes knowledge of COBOL source code rules, COBOL
reserved words, COBOL structure, and the ability to locate and interpret professional COBOL documentation.
These COBOL characteristics must be understood, to be proficient in reading, writing, and maintaining
COBOL programs.

8.1.1 Enterprise COBOL

COBOL is a standard and not owned by any company or organization. “Enterprise COBOL” is the name for
the COBOL programming language compiled and executed in the IBM Z Operating System, z/OS. COBOL
details and explanations in the following chapters apply to Enterprise COBOL.

Enterprise COBOL has decades of advancements, including new functions, feature extensions, improved
performance, application programming interfaces (APIs), etc. It works with modern infrastructure technologies
with native support for JSON, XML, and Java®.

46

8.1.2 Chapter objectives

The object of the chapter is to expose the reader to COBOL terminology, coding rules, and syntax while the
remaining chapters include greater detail with labs for practicing what is introduced in this chapter.

8.2 What must a novice COBOL programmer know to be an experienced
COBOL programmer?

This section will provide the reader with the information needed to more thoroughly understand the questions
and answers being asked in each subsequent heading.

8.2.1 What are the coding rules and the reference format?

COBOL source code is column dependent, meaning column rules are strictly enforced. Each COBOL source
code line has five areas, where each of these areas has a beginning and ending column.

COBOL source text must be written in COBOL reference format. Reference format consists of the areas
depicted in Figure 1. in a 72-character line.

Figure 1. COBOL reference format

The COBOL reference format is formatted as follows:

8.2.1.1 Sequence Number Area (columns 1 - 6)

• Blank or reserved for line sequence numbers.

8.2.1.2 Indicator Area (column 7)

• A multi-purpose area:

– Comment line (generally an asterisk symbol)

– Continuation line (generally a hyphen symbol)

– Debugging line (D or d)

– Source listing formatting (a slash symbol)

8.2.1.3 Area A (columns 8 - 11)

• Certain items must begin in Area A, they are:

– Level indicators

– Declarative

– Division, Section, Paragraph headers

– Paragraph names

• Column 8 is referred to as the A Margin

47

8.2.1.4 Area B (columns 12 - 72)

• Certain items must begin in Area B, they are:

– Entries, sentences, statements, and clauses

– Continuation lines

• Column 12 is referred to as the B Margin

8.2.1.5 Identification Area (columns 73 - 80)

• Ignored by the compiler.

• Can be blank or optionally used by programmer for any purpose.

8.2.2 What is the structure of COBOL?

COBOL is a hierarchy structure consisting and in the top-down order of:

• Divisions

• Sections

• Paragraphs

• Sentences

• Statements

8.2.3 What are COBOL reserved words?

COBOL programming language has many words with specific meaning to the COBOL compiler, referred to as
reserved words. These reserved words cannot be used as programmer chosen variable names or programmer
chosen data type names.

A few COBOL reserved words pertinent to this book are: PERFORM, MOVE, COMPUTE, IF, THEN,
ELSE, EVALUATE, PICTURE, etc.. You can find a table of all COBOL reserved words is located at:

https://www.ibm.com/support/knowledgecenter/zh/SSZJPZ_9.1.0/com.ibm.swg.im.iis.ds.mfjob.dev.doc/t
opics/r_dmnjbref_COBOL_Reserved_Words.html

8.2.4 What is a COBOL statement?

Specific COBOL reserved words are used to change the execution flow based upon current conditions.
“Statements” only exist within the Procedure Division, the program processing logic. Examples of COBOL
reserved words used to change the execution flow are:

• IF

• Evaluate

• Perform

8.2.5 What is the meaning of a scope terminator?

A scope terminator can be explicit or implicit. An explicit scope terminator marks the end of certain
PROCEDURE DIVISION statements with the “END-” COBOL reserved word. Any COBOL verb that is
either, always conditional (IF, EVALUATE), or has a conditional clause (COMPUTE, PERFORM, READ)
will have a matching scope terminator. An implicit scope terminator is a period (.) that ends the scope of all
previous statements that have not yet been ended.

48

https://www.ibm.com/support/knowledgecenter/zh/SSZJPZ_9.1.0/com.ibm.swg.im.iis.ds.mfjob.dev.doc/topics/r_dmnjbref_COBOL_Reserved_Words.html
https://www.ibm.com/support/knowledgecenter/zh/SSZJPZ_9.1.0/com.ibm.swg.im.iis.ds.mfjob.dev.doc/topics/r_dmnjbref_COBOL_Reserved_Words.html

8.2.6 What is a COBOL sentence?

A COBOL “Sentence” is one or more “Statements” followed by a period (.), where the period serves as a
scope terminator.

8.2.7 What is a COBOL paragraph?

A COBOL “Paragraph” is a user-defined or predefined name followed by a period. A “Paragraph” consists of
zero or more sentences and are the subdivision of a “Section” or “Division”, see Example 1. below.

Example 1. Division -> paragraph -> sentences

8.2.8 What is a COBOL section?

A “Section” is either a user-defined or a predefined name followed by a period and consists of zero or more
sentences. A “Section” is a collection of paragraphs.

8.3 COBOL Divisions
This section introduces the four COBOL Divisions and briefly describes their purpose and characteristics.

8.3.1 COBOL Divisions structure

Divisions are subdivided into Sections.

Sections are subdivided into Paragraphs.

Paragraphs are subdivided into Sentences.

Sentences consists of Statements.

Statements begin with COBOL reserved words and can be subdivided into “Phrases”

8.3.2 What are the four Divisions of COBOL?

8.3.2.1 IDENTIFICATION DIVISION The IDENTIFICATION DIVISION identifies the program
with a name and, optionally, gives other identifying information, such as the Author name, program compiled
date (last modified), etc.

8.3.2.2 ENVIRONMENT DIVISION The ENVIRONMENT DIVISION describes the aspects of
your program that depend on the computing environment, such as the computer configuration and the
computer inputs and outputs.

8.3.2.3 DATA DIVISION The DATA DIVISION is where characteristics of data are defined in one of
the following sections:

• FILE SECTION:

Defines data used in input-output operations.

• LINKAGE SECTION:

Describes data from another program. When defining data developed for internal processing.

49

• WORKING-STORAGE SECTION:

Storage allocated and remaining for the life of the program.

• LOCAL-STORAGE SECTION:

Storage allocated each time a program is called and de-allocated when the program ends.

8.3.2.4 PROCEDURE DIVISION The PROCEDURE DIVISION contains instructions related to
the manipulation of data and interfaces with other procedures are specified.

8.4 PROCEDURE DIVISION explained
The PROCEDURE DIVISION is where the work gets done in the program. Statements are in the PROCE-
DURE DIVISION where they are actions to be taken by the program. The PROCEDURE DIVISION is
required for data to be processed by the program. PROCEDURE DIVISION of a program is divided into
sections and paragraphs, which contain sentences and statements, as described here:

• Section - A logical subdivision of your processing logic. A section has a header and is optionally
followed by one or more paragraphs. A section can be the subject of a PERFORM statement. One type
of section is for declaratives. Declaratives are a set of one or more special purpose sections. Special
purpose sections are exactly what they sound like, sections written for special purposes and may contain
things like description of inputs and outputs. They are written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the key word DECLARATIVES and the last of which is
followed by the key word END DECLARATIVES.

• Paragraph - A subdivision of a section, procedure, or program. A paragraph can be the subject of a
statement.

• Sentence - A series of one or more COBOL statements ending with a period.

• Statement - An action to be taken by the program, such as adding two numbers.

• Phrase - A small part of a statement (i.e. subdivision), analogous to an English adjective or preposition

8.5 Additional information
This section provides useful resources in the form of manuals and videos to assist in learning more about the
basics of COBOL.

8.5.1 Professional manuals

As Enterprise COBOL experience advances, the need for the professional documentation is greater. An
internet search for Enterprise COBOL manuals includes: “Enterprise COBOL for z/OS documentation library
- IBM”, link provided below. The site content has tabs for each COBOL release level. As of April 2020, the
current release of Enterprise COBOL is V6.3. Highlight V6.3 tab, then select product documentation.

https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library

Three ‘Enterprise COBOL for z/OS” manuals are referenced throughout the chapters as sources of additional
information, for reference and to advance the level of knowledge. They are:

1. Language Reference - Describes the COBOL language such as program structure, reserved words, etc.

http://publibfp.boulder.ibm.com/epubs/pdf/igy6lr30.pdf

2. Programming Guide - Describes advanced topics such as COBOL compiler options, program performance
optimization, handling errors, etc.

http://publibfp.boulder.ibm.com/epubs/pdf/igy6pg30.pdf

50

https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library
http://publibfp.boulder.ibm.com/epubs/pdf/igy6lr30.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/igy6pg30.pdf

3. Messages and Codes - To better understand certain COBOL compiler messages and return codes to
diagnose problems.

http://publibfp.boulder.ibm.com/epubs/pdf/c2746481.pdf

8.5.2 Learn more about recent COBOL advancements

• What’s New in Enterprise COBOL for z/OS V6.1:

https://youtu.be/N_Zsd1W8hWc

• What’s New in Enterprise COBOL for z/OS V6.2:

https://youtu.be/H0iweEbVNFs

• What’s New in Enterprise COBOL for z/OS V6.3:

https://youtu.be/bRLKGeB6W2A

8.6 Lab
In this lab exercise you will connect to an IBM Z system, view a simple COBOL hello world program in
VSCode, submit JCL to compile the COBOL program, and view the output. Refer to “Installation of VSCode
and extensions” to configure VSCode if you have not already done so. You can either use Z Open Editor and
Zowe Explorer, or Code4z.

1. The lab assumes installation of VSCode with either Z Open Editor and Zowe Explorer extensions, as
shown in Figure 2a, or the Code4z extension pack, as shown in Figure 2b.

Click the Extensions icon. If you installed Z Open Editor and Zowe Explorer, the list should include:

1. IBM Z Open Editor
2. Zowe Explorer

Figure 2a. The Z Open Editor and Zowe Explorer VSCode extensions

If you installed Code4z, the list should include:

1. COBOL
2. COBOL Language Support
3. Code4z
4. Debugger for Mainframe
5. Explorer for Endevor
6. HLASM Language Support
7. Zowe Explorer

51

http://publibfp.boulder.ibm.com/epubs/pdf/c2746481.pdf
https://youtu.be/N_Zsd1W8hWc
https://youtu.be/H0iweEbVNFs
https://youtu.be/bRLKGeB6W2A

In these exercises, you will only use the COBOL Language Support and Zowe Explorer extensions.

Figure 2b. The Code4z package of VS Code extensions.

Note: If your list contains both Z Open Editor and COBOL Language Support, disable one of them, by
clicking on the cog icon next to the extension in the extensions list, and selecting disable.

2. Click the Zowe Explorer icon as shown in Figure 3.

Figure 3. Zowe Explorer Zowe Explorer icon

3. Zowe Explorer can list Data Sets, Unix System Services (USS) files, and Jobs output as shown in Figure
4. + will appear when hovering to the far right on the DATA SETS line. Click the + to define a
VSCode profile.

52

Figure 4. Zowe Explorer

4. A box appears to define a new profile. Click + to the left of Create a New Connection to z/OS as
shown in Figure 5.

Figure 5. Create a new connection to z/OS

5. Select a name to enter, then enter. Figure 6. used LearnCOBOL as the selected connection name.

Figure 6. Set connection name

6. VSCode prompts for z/OSMF URL and port as shown in Figure 7. The z/OSMF URL and port will
normally be provided by z/OS System Administrator.

Figure 7. z/OSMF URL

7. A sample z/OSMF URL and port is entered as shown in Figure 8.

53

Figure 8. Specified z/OSMF URL

8. The connection prompts for Username as shown in Figure 9.

Figure 9. User name prompt

9. Please enter the username assigned to you! Do not use the sample username of Z99998.
A sample username, is entered as shown in Figure 10. The ID is assigned by the System Administrator.

Figure 10. Specified user name

10. The connection prompts for the password as shown in Figure 11.

Figure 11. Password prompt

11. Enter the password as shown in Figure 12.

Figure 12. Specified password

12. Select False - Accept connections with self-signed certificates to authorize workstation connec-
tion as shown in Figure 13.

54

Figure 13. Accept connections with self-signed certifications

13. Result is Favorites in the Data Sets, Unix System Services, and Jobs sections as shown in Figure 14.

Figure 14. Favorites

14. Again, click on the + to the far right on the Data Sets selection. Result is another prompt to Create a
New Connection to z/OS. LearnCOBOL is in the connection list. Select LearnCOBOL for the Data
Sets available to the previously defined LearnCOBOL connection to z/OS as shown in Figure 15.

Figure 15. LearnCOBOL connection

15. Expansion of LearnCOBOL reads “Use the search button to display datasets”. Click the search button
as shown in Figure 16.

Figure 16. Search button

55

16. A prompt to “Select a filter” appears for your username. Select the + to “Create a new filter” as shown
in Figure 17.

Figure 17. Select a filter

17. A prompt appears to enter the filter name to be searched as shown in Figure 18.

Figure 18. Filter name to be searched

18. Each user has a high-level qualifier that is the same as their username. Therefore, enter your assigned
username as the search criteria as shown in Figure 19. Please use your username, not Z99998!

Figure 19. Entered filter name

19. A list of data set names beginning with your username from z/OS Connection LearnCOBOL appears
as shown in Figure 20.

Figure 20. Filtered data set names

20. Expand <USERNAME>.CBL to view COBOL source members, then select member HELLO to see a
simple COBOL ‘Hello World!’ program as shown in Figure 21.

56

Figure 21. <USERNAME>.CBL

21. Expand <USERNAME>.JCL to view JCL and select member HELLO which is the JCL to compile and
execute simple ‘Hello World!’ COBOL source code as shown in Figure 22.

Figure 22. <USERNAME>.JCL

22. Right click on JCL member HELLO . A section box appears. Select Submit Job for system to
process HELLO JCL as shown in Figure 23. The submitted JCL job compiles the COBOL HELLO
source code, then executes the COBOL HELLO program.

Figure 23. Submit Job

23. Observe the ‘Jobs’ section in Zowe Explorer as shown in Figure 24.

Figure 24. JOBS section

24. Again, click on the + to the far right on the Jobs selection. Result is another prompt to ‘Create new’.
Select LearnCOBOL from the list as shown in Figure 25.

57

Figure 25. + Select LearnCOBOL connection

25. As a result, the JCL jobs owned by your username appears. HELLOCBL is the JCL job name previously
submitted. Expand HELLOCBL output to view sections of the output as shown in Figure 26.

Figure 26. HELLOCBL output

26. Select COBRUN:SYSPRINT(101) to view the COBOL compiler output. Scroll forward in the
COBOL compile to locate the COBOL source code compiled into an executable module as shown
in Figure 27. Observe the Indicator Area in column 7, A Area beginning in column 8, and B Area
beginning in column 12. Also, observe the period (.) scope terminators in the COBOL source.

58

Figure 27. COBOL compiler output

27. View the COBOL program execution by selecting COBRUN:SYSOUT(105) from the LearnCOBOL
in the Jobs section of Zowe Explorer as shown in Figure 28.

Figure 28. COBOL program execution

28. The following URL is another excellent document describing the above VSCode and Zowe Explore
details with examples: https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-
for-zowe

8.7 Lab - Zowe CLI & Automation
In this lab exercise you will use the Zowe CLI to automate submitting the JCL to compile, link, and run the
COBOL program and downloading the spool output. Refer to the section on the “Installation of Zowe CLI

59

https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe

and Plug-ins” to install Zowe CLI if you have not already done so. Before developing the automation, we will
first leverage the Zowe CLI interactively.

8.7.1 Zowe CLI - Interactive Usage

In this section, we will use the Zowe CLI interactively to view data set members, submit jobs, and review
spool output.

1. Within VS Code, open the integrated terminal (Terminal -> New Terminal). In the terminal, issue
zowe --version to confirm the Zowe CLI is installed as depicted in the following figure. If it is not
installed, please refer to to the section on the “Installation of Zowe CLI and Plug-ins.” Also notice that
the default shell selected (outlined in red) is bash. I would recommend selecting the default shell as
either bash or cmd for this lab.

Figure 29. zowe --version command in VS Code Integrated Terminal (Shell selection outlined in red)

2. In order for Zowe CLI to interact with z/OSMF the CLI must know the connection details such as
host, port, username, password, etc. While you could enter this information on each command, Zowe
provides the ability to store this information in configurations commonly known as profiles. Zowe CLI
and the Zowe VS Code Extension share profiles. So if you created a connection profile in the first lab,
you could naturally leverage it here.

To create a LearnCOBOL profile (and overwrite it if it already exists), issue the following command with
your system details (using prompt* will prompt you for certain fields and not show input):

zowe profiles create zosmf LearnCOBOL --host 192.86.32.250 --port 10443
--ru false --user prompt * --pass prompt * --ow

Many profiles can be created for interacting with different z/OSMF instances. If this was not your first
profile, you will want to set it as the default for the following lab exercises. Issue the following command:

zowe profiles set zosmf LearnCOBOL

The following figure demonstrates this sequence of commands.

60

Figure 30. Create and set z/OSMF profile (secure credential store plug-in is in use)

3. Confirm you can connect to z/OSMF by issuing the following command:

zowe zosmf check status

4. List data sets under your ID by issuing a command similar to (see sample output in the following
figure):

zowe files list ds " Z80462 .*"

You can also list all members in a partitioned data set by issuing a command similar to (see sample output in
the following figure):

zowe files list am " Z80462 .CBL"

Figure 31. zowe files list ds and am commands

61

5. Next, we will download our COBOL and JCL data set members to our local machine. First, create
and open a new folder in your file explorer. Note that you could also create a workspace to manage
multiple projects. See the following figure for help:

Figure 32. File explorer view to demonstrate opening a new folder

Once you have an empty folder opened, return to the integrated terminal, ensure you are in your folder, and
issue commands similar to:

zowe files download am " Z80462 .CBL" -e ". cbl"
zowe files download am " Z80462 .JCL" -e ". jcl"

Then open hello.cbl in your file explorer. A completed example is shown in the following figure:

Figure 33. Download and view data set members using the CLI

6. Next, we will submit the job in member Z80462.JCL(HELLO). To submit the job, wait for it to complete,
and view all spool content, issue:

zowe jobs submit ds " Z80462 .JCL(HELLO)" --vasc

We could also perform this step in piecemeal to get the output from a specific spool file. See the next figure
for an example of the upcoming commands. To submit the job and wait for it to enter OUTPUT status,
issue:

62

zowe jobs submit ds " Z80462 .JCL(HELLO)" --wfo

To list spool files associated with this job id, issue:

zowe jobs list sfbj JOB00906

where JOB00906 was returned from the previous command.

To view a specific spool file (COBRUN:SYSOUT), issue:

zowe jobs view sfbi JOB00906 105

where JOB00906 and 105 are obtained from the previous commands.

Figure 34. Submit a job, wait for it to complete, then list spool files for the job, and view a specific spool file

If desired, you can also easily submit a job, wait for it to complete, and download the spool content using the
following command (see the following figure for the completed state):

zowe jobs submit ds " Z80462 .JCL(HELLO)" -d .

63

Figure 35. Submit a job, wait for it to complete, download and view spool files

The Zowe CLI was built with scripting in mind. For example, you can use the --rfj flag to receive output in
JSON format for easy parsing. See the next figure for an example.

Figure 36. The --rfj flag allows for easy programmatic usage

8.7.2 Zowe CLI - Programmatic Usage

In this section, we will leverage the Zowe CLI programmatically to automate submitting the JCL to compile,
link, and run the COBOL program and downloading the spool output. Once you have the content locally
you could use any number of distributed scripting and testing tools to eliminate the need to manually review
the spool content itself. Historically, in Mainframe we use REXX EXEC etc. for automation, but today we
are going to use CLI and distributed tooling.

64

1. Since we already have Node and npm installed, let’s just create a node project for our automation. To
initialize a project, issue npm init in your project’s folder and follow the prompts. You can accept
the defaults by just pressing enter. Only the description and author fields should be changed. See the
following figure.

Figure 37. Use of npm init to create package.json for the project

2. Now that we have our package.json simply replace the test script with a clg script that runs the
following zowe command (replace Z80462 with your high level qualifier):

zowe jobs submit ds 'Z80462 .JCL(HELLO)' -d .

You can name the script whatever you want. I only suggested clg because the CLG in the IGYWCLG proc
(which is what the JCL leverages) stands for compile, link, go. Now, simply issue npm run clg in your
terminal to leverage the automation to compile, link and run the COBOL program and download the output
for review. An example of the completed package.json and command execution are shown in the following
figure.

65

Figure 38. Final package.json and npm run clg execution

3. If you prefer a graphical trigger, you can leverage VS Code as shown in the following figure. Essentially,
the CLI enables you to quickly build your own buttons for your custom z/OS tasks. You could also
invoke a script rather than a single command to accomodate more complex scenarios.

Figure 39. clg task triggered via button

66

9 Data division
Understanding COBOL variables and program processing of variables are essential to effectively learning the
COBOL language. An experienced COBOL programmer must master characteristics of COBOL variables
and the program processing using the variables introduced in this chapter. The objective is to introduce the
reader to the basics of COBOL variables while exposing the reader to the many advanced COBOL variable
options.

Following this chapter is a lab available to compile and execute the COBOL source code provided later in the
chapter. Following the successful compile and execution of one provided program, a second provided COBOL
program with a minor change is available to compile. The second program has an embedded error and on
compile will fail. The failed compilation is an opportunity to identify the error associated with the significance
of PICTURE clause data types associated with the operation of the COMPUTE statement (discussed in this
chapter) and how to solve the error.

• Variables / Data-items

– Variable / Data-item name restrictions and data types

• PICTURE clause

– PIC clause symbols and data types

– Coding COBOL variable / data-item names

– PICTURE clause character-string representation

• Literals

– Figurative constants

– Data relationships

– Levels of data

• MOVE and COMPUTE

• Lab

9.1 Variables / Data-items
A COBOL variable, also known as a data-item, is a name and is chosen by the COBOL programmer. The
named variable is coded to hold data where the data value can vary, hence the generic term ‘variable’. A
COBOL variable name is also known as ‘Data Name’. A COBOL variable name has restrictions.

9.1.1 Variable / Data-item name restrictions and data types

A list of COBOL variable name restrictions or rules are:

• Must not be a COBOL reserved word.

• Must not contain a space as a part of the name.

• Name contains letters (A-Z), digits (0-9), underscores (_) and hyphens (-).

• Maximum length of 30 characters.

• A hyphen cannot appear as the first or last character.

• An underscore cannot appear as the first character.

Note : A full list of COBOL reserved words can be found in the Enterprise COBOL Language Reference,
Appendix E.

67

When COBOL source code is compiled into an executable program, the COBOL compiler is expecting a
named COBOL variable to possess attributes such as a length and data type. During program execution, the
variable represents a defined area of processing memory where the memory location has a maximum length
and designated data type.

A list of the most common COBOL data types are:

• Numeric (0-9)

• Alphabetic (A-Z), (a-z), or a space

• Alphanumeric Numeric and Alphabetic Combination

9.2 PICTURE clause
The COBOL reserved word, PICTURE (PIC), determines the length and data type of a programmer selected
variable name. Data types described by PIC are commonly referred to as a picture clause or pic clause. Some
simple pic clauses are:

• PIC 9 - single numeric value where length is one

• PIC 9(4) - four numeric values where length is four

• PIC X - single alphanumeric (character) value where length is one

• PIC X(4) - four alphanumeric values where length is four

9.2.1 PIC clause symbols and data types

The maximum length of a picture clause is dependent upon the data type and compiler options. The PIC
reserved word has many more data types beyond numeric (PIC 9) and alphanumeric (PIC X). As an example,
an alphabetic only data type is defined as PIC A. Other PIC clause symbols are:

B E G N P S U V Z 0 / + - , . * CR DB cs

Where cs is any valid currency symbols such as the dollar sign ($).

All PIC clause symbols are described in the Enterprise COBOL for z/OS Language Reference manual.

9.2.2 Coding COBOL variable / data-item names

A PIC clause describes the data type of a variable/data-item name. Coding a variable/data-item is done in
the DATA DIVISION. The COBOL code describing a variable/data-item name is accomplished using a level
number and a picture clause.

• Level number - A hierarchy of fields in a record.

• Variable name / Data-item name - Assigns a name to each field to be referenced in the program and
must be unique within the program.

• Picture clause - For data type checking.

Figure 1. below is an example of COBOL level numbers with respective variable/data-item names and picture
clause.

9.2.3 PICTURE clause character-string representation

Some PIC clause symbols can appear only once in a PIC clause character-string, while other can appear more
than once. For example:

• PIC clause to hold value 1123.45 is coded as follows, where the V represents the decimal position.

PIC 9(4)V99

68

https://www.ibm.com/support/knowledgecenter/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/PGandLR/igy3lr50.pdf

• PIC clause for a value such as $1,123.45 is coded as follows:

PIC $9,999V99

9.3 Literals
A COBOL literal is constant data value, meaning the value will not change like a variable can. The
COBOL statement, DISPLAY "HELLO WORLD!", is a COBOL reserved word, DISPLAY , followed by a literal,
HELLO WORLD!

9.3.1 Figurative constants

Figurative constants are reserved words that name and refer to specific constant values. Examples of figurative
constants are:

• ZERO, ZEROS, ZEROES

• SPACE, SPACES

• HIGH-VALUE, HIGH-VALUES

• LOW-VALUE, LOW-VALUES

• QUOTE, QUOTES

• NULL, NULLS

9.3.2 Data relationships

The relationships among all data to be used in a program is defined in the DATA DIVISION, through a
system of level indicators and level-numbers. A level indicator, with its descriptive entry, identifies each file in
a program. Level indicators represent the highest level of any data hierarchy with which they are associated.
A level-number, with its descriptive entry, indicates the properties of specific data. Level-numbers can be
used to describe a data hierarchy; they can indicate that this data has a special purpose.

9.3.2.1 Level numbers A structured level number hierarchic relationship is available to all DATA
DIVISION sections. Figure 1. shows the level number hierarchic relationship with programmer chosen level
numbers, variable names and PIC clauses in the File Section where “01 PRINT-REC” references the following
“05”-level group of variables and the “01 ACCT-FIELDS” references the following “05”-level group of variables.
Observe 05-level CLIENT-ADDR is further subdivided into several 10-level names. COBOL code referencing
the name CLIENT-ADDR includes the 10-level names.

69

Figure 1. Level number hierarchic relationship

9.3.3 Levels of data

After a record is defined, it can be subdivided to provide more detailed data references as seen in Figure 1.
A level number is a one-digit or two-digit integer between 01 and 49, or one of three special level numbers:
66, 77, or 88 where the variable names are assigned attributes different from the 01-49-level numbers. The
relationship between level numbers within a group item defines the hierarchy of data within that group. A
group item includes all group and elementary items that follow it until a level number less than or equal to
the level number of that group is encountered.

9.4 MOVE and COMPUTE
MOVE and COMPUTE reserved word statements alter the value of variable names. Each MOVE shown in
Figure 2. results in a literal stored in a 77-level variable name. The COMPUTE statement, also shown in
Figure 2. , stores the value of HOURS * RATE in GROSS-PAY. All three variable names are assigned a numeric
value data type using PIC 9, which is necessary for the operation of the COMPUTE statement.

70

71

Figure 2. MOVE and COMPUTE example

9.5 Lab
Note : It may take a few seconds to load in all segments of this lab. If files are not loading, hit the refresh
button on the list that appears when hovering over the section bar.

1. View the PAYROL00 COBOL source code member in the ‘id’.CBL data set.

2. Submit the JCL member, PAYROL00, from the id.JCL, where id is your id,dropdown. This is where
id.JCL(PAYROL00) compiles and successfully executes the PAYROL00. program.

Figure 3. Submit PAYROL00 job

Note : If you receive this error message after submitting the job:
That is because you submitted the job from the .CBL data set and not the .JCL data set.

3. View both compile and execution of PAYROL00 job output, referenced in Figure 4.

Figure 4. PAYROL00 output

4. Next, view PAYROL0X COBOL source code member in id.CBL data set.

5. View and submit the JCL member, PAYROL0X, from the id.JCL dropdown. This is where
id.JCL(PAYROL0X) compiles and executes the PAYROL0X program.

6. View the compile of PAYROLL0X job output, notice there is no execution output.

Do you notice a difference between this compile and the previous job compile shown in Figure 5. ?

Figure 5. Compare job compiles

The difference is the return/completion code associated with each job output, located both next to the job
output name within the JOBS section as shown above, or at the end of the compile output as, 0Return code

72

##. A return code of 12 means there was an error, but how do we know what that error was? Continue to
find out!

7. Observe the text associated with IGYPA3146-S on line 137 within the job output (compile), illustrated
in Figure 6.

Figure 6. IGYPA3146-S message

Notice that this line tells you to focus on the GROSS-PAY picture clause in order to identify the problem.
Use this information, modify the PAYROL0X COBOL source code to fix the error. Be sure you are editing
the correct code.

8. After modifying, re-submit the PAYROL0X JCL to verify the problem has been identified and corrected,
resulting in a successful compile and execution with a return code of zero, shown in Figure 7.

Figure 7. Compare return codes

73

10 File handling
The previous chapter and lab focused on variables and moving literals into variables, then writing variable
content using the COBOL DISPLAY statement. This section introduces reading records from files into
variables, moving the variables to output variables, and writing the output variables to a different file. A
simple COBOL program to read each record from a file and write each record to a different file is used to
illustrate COBOL code necessary to read records from an input external data source and write records to an
output external data source.

An experienced COBOL programmer can answer the question, “How does an Enterprise COBOL program
read data from an input external data source and write data to an output external data source?” The
objective of this chapter is to provide enough comprehensive information for the reader to be able to answer
that question.

• COBOL code used for sequential file handling

– COBOL inputs and outputs

– FILE-CONTROL paragraph

– COBOL external data source

– Data sets, records, and fields

– Blocks

– ASSIGN clause

• PROCEDURE DIVISION sequential file handling

– Open input and output for read and write

– Close input and output

• COBOL programming techniques to read and write records sequentially

– READ-NEXT-RECORD paragraph execution

– READ-RECORD paragraph

– WRITE-RECORD paragraph

– Iterative processing of READ-NEXT-RECORD paragraph

• Lab

10.1 COBOL code used for sequential file handling
COBOL code used for sequential file handling involves:

• ENVIRONMENT DIVISION.

– SELECT clauses

– ASSIGN clauses

• DATA DIVISION.

– FD statements

• PROCEDURE DIVISION.

– OPEN statements

– CLOSE statements

– READ INTO statement

74

– WRITE FROM statement

10.1.1 COBOL inputs and outputs

The ENVIRONMENT DIVISION and DATA DIVISION describes the inputs and outputs used in the
PROCEDURE DIVISION program logic. Previous chapters introduced variable descriptions in the DATA
DIVISION and literals were moved into the defined variables. The role of the ENVIRONMENT DIVISION
and more specifically, the INPUT-OUTPUT SECTION, FILE-CONTROL paragraph introduces accessing
external data sources where the data from external sources are moved into defined variables.

10.1.2 FILE-CONTROL paragraph

The FILE-CONTROL paragraph associates each COBOL internal file name with an external dataset name.
Within the FILE-CONTROL paragraph, the SELECT clause creates an internal file name and the ASSIGN
clause creates an external dataset name. Figure 1. shows the PRINT-LINE internal file name associated with
the PRTLINE external dataset name and the ACCT-REC internal file name associated with the ACCTREC
external dataset name. Section titled Assign Clause further explains the SELECT ASSIGN TO relationship.

Figure 1. FILE-CONTROL

While SELECT gives a name to an internal file and ASSIGN gives a name to the external dataset name,
a COBOL program needs more information about both. The COBOL compiler is given more information
about both in the DATA DIVISION, FILE SECTION.

The COBOL reserved word ‘FD’ is used to give the COBOL compiler more information about internal file
names in the FILE-SECTION. The code below the FD statement is the record layout. The record layout
consists of level numbers, variable names, data types, and lengths as shown in Figure 2.

75

Figure 2. FILE-SECTION

10.1.3 COBOL external data source

Enterprise COBOL source code compiles and executes on IBM Z Mainframe hardware where z/OS is the
operating system software. z/OS stores data in both data sets and Unix files. z/OS includes many data
storage methods. This chapter will focus on the z/OS sequential data storage method. A sequential dataset
is a collection of records.

10.1.4 Data sets, records, and fields

A dataset has many records. A record is a single line in the dataset and has a defined length. Each record
can be subdivided into fields where each field has a defined length. Therefore, the sum of all field lengths
would equal the length of the record. Observe Figure 3.

10.1.5 Blocks

Each record read by the program can result in disk storage access. A program typically reads 1 record at a
time in sequential order until all records are read. When a record is read, the record retrieved from disk is
stored in memory for program access. When each next record read requires the need to retrieve the record
from disk, system performance is impacted negatively. Records can be blocked where a block is a group
of records. The result is when the first record is read, then an entire block of records is read into memory
assuming the program will be reading the second, third, etc. records avoiding unnecessary disk retrievals and
negative system performance. The memory holding a record or block of records to be read by the program is
known as a buffer. COBOL BLOCK CONTAINS clause is available to specify the size of the block in the
buffer. Observe Figure 3.

Figure 3. Records, fields, and blocks

76

10.1.6 ASSIGN clause

While the SELECT clause name is an internal file name, the ASSIGN clause name is describing a data source
external to the program. z/OS uses Job Control Language, JCL, operations to tell the system what program
to load and execute followed by input and output names needed by the program. The JCL input and output
names are call DDNAMEs. The JCL DDNAME statement includes a JCL DD operation where DD is an
abbreviation for Data Definition. On the same DDNAME statement is the system-controlled data set name.

COBOL code “SELECT ACCT-REC ASSIGN TO ACCTREC” requires a JCL DDNAME ACCTREC with
a DD redirecting ACCTREC to a z/OS controlled dataset name, MY.DATA. The COBOL program is shown
in Example 1.

The purpose of the redirection of ACCT-REC, via ASSIGN TO, to JCL DDNAME, ACCTREC is flexibility.
ACCT-REC is used in the program itself, ACCTREC is a bridge to JCL, shown in Example 1. , and a DD
JCL statement links ACCTREC to an actual dataset, shown in Example 2. This flexibility allows the same
COBOL program to access a different data source with a simple JCL modification avoiding requirement to
change the source code to reference the alternate data source.

SELECT ACCT -REC ASSIGN TO ** ACCTREC **

Example 1. COBOL program

The JCL statement required by the compiled COBOL program during execution to redirect ACCTREC to
the MY.DATA z/OS controlled dataset is shown in Example 2.

//** ACCTREC ** DD DSN=MY.DATA ,DISP=SHR

Example 2. JCL statement

In summary, ACCT-REC is the internal file name. ACCTREC is the external name where a JCL DDNAME
must match the COBOL ASSIGN TO ACCTREC name. At program execution the JCL ACCTREC
DDNAME statement is redirected to the dataset name identified immediately after the JCL DD operation.

ACCT-REC >>> ACCTREC >>> //ACCTREC >>> DD >>> MY.DATA

As a result, the COBOL internal ACCT-REC file name reads data records from sequential dataset named
MY.DATA.

JCL is a separate z/OS technical skill. The introduction to COBOL explains just enough about JCL to
understand how the COBOL internal file name locates the external sequential dataset name. To read more
on JCL, visit the IBM Knowledge Center:

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zjcl/zjclc_basicjclconcepts.htm

10.2 PROCEDURE DIVISION sequential file handling
During COBOL program runtime, SELECT ASSIGN TO a JCL DDNAME is mandatory. If the ASSIGN
TO name fails to associate with a JCL DDNAME of the same spelling, at runtime, then a program runtime
error occurs when the OPEN operation is attempted. A message appears in the runtime output indicating
the DDNAME was not found. READ and WRITE are dependent upon successful completion of the OPEN
operation. The compiler cannot detect the runtime error because the compiler is unaware of the actual
runtime JCL DDNAME dataset name subject to OPEN, READ, or WRITE. The FD, File Descriptor,
mapping of the data record fields requires a successful OPEN to be populated by subsequent READ or
WRITE operations.

10.2.1 Open input and output for read and write

COBOL inputs and outputs must be opened to connect the selected internal name to the assigned external
name. Figure 4. opens the file name ACCT-REC as program input and file name PRINT-LINE as program
output.

77

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zjcl/zjclc_basicjclconcepts.htm

Figure 4. OPEN-FILES

10.2.2 Close input and output

COBOL inputs and outputs should be closed at program completion or better yet when the program is done
reading from or writing to the internal file name. Figure 5. closes the internal file name ACCT-REC and
internal file name PRINT-LINE, then stops processing, STOP RUN.

Figure 5. CLOSE-STOP

10.3 COBOL programming techniques to read and write records sequentially
When reading records, the program needs to first check for no records to be read or check for no more
records to be read. If a record exists, then the fields in the read record populate variable names defined by
the FD clause. COBOL uses a PERFORM statement for iteration. In computer programming, iterative
is used to describe a situation in which a sequence of instructions or statements can be executed multiple
times. One pass through the sequence is called an iteration. Iterative execution is also called a loop. In
other programming languages, ‘DO’ or ‘FOR’ statements are used for iterative execution. COBOL uses a
PERFORM statement for iterative execution. Figure 6. shows four programmer chosen paragraph names in
the PROCEDURE DIVISION.

• READ-NEXT-RECORD

• CLOSE-STOP

• READ-RECORD

• WRITE-RECORD

READ-NEXT-RECORD repeatedly executes READ-RECORD and WRITE-RECORD until a last record is
encountered. When the last record is encountered, then CLOSE-STOP is executed stopping the program.

78

Figure 6. Reading and writing records

Note: COBOL is English-like and COBOL reserved words are English-like. The programmer is free to
use English-like variable names to help remember the purpose of the variable names. The PROCEDURE
DIVISION structure is English-like. A paragraph contains one or more sentences. A sentence contains one or
more statements. The implicit scope terminator, a period (.), terminates a sentence or terminates several
consecutive statements which would be analogous to a compounded sentence where ‘and’ joins potentially
independent sentences together. ###

10.3.1 READ-NEXT-RECORD paragraph execution

The READ-NEXT-RECORD paragraph is a COBOL programming technique used to read all records
from a sequential file UNTIL the last record is read. The paragraph contains a compounded sentence
terminated by an implicit scope terminator, (.) period, on a separate line following the END-PERFORM
statement. The PERFORM UNTIL through END-PERFORM, explicit scope terminator, is repeatedly
executed until LASTREC variable contains Y. The first PERFORM READ-RECORD results in a branch to
the READ-RECORD paragraph. Observe #1 in Figure 7.

10.3.2 READ-RECORD paragraph

The READ-RECORD paragraph executes the COBOL READ statement resulting in the external sequential
file populating the variables associated with ACCT-REC internal file name. If ‘AT END’ of records read, then
Y is moved into the LASTREC variable. The READ statement is terminated by an explicit scope terminator,

79

END-READ. The paragraph is terminated by an implicit scope terminator, (.) period. Control is returned to
READ-NEXT-RECORD paragraph to execute the next statement, PERFORM WRITE-RECORD.

10.3.3 WRITE-RECORD paragraph

The WRITE-RECORD paragraph contains several sentences terminated by an implicit scope terminator, (.)
period. The MOVE statements result in each input file variable name moved to an output file variable name.
The last sentence in the paragraph writes the collection of output file variable names, PRINT-REC.

PRINT-REC is assigned to PRTREC. JCL is used to execute the COBOL program. An associated JCL
PRTREC DDNAME redirects the written output to a z/OS controlled data set name, etc. using JCL DD
operation on the JCL DDNAME statement. Observe #2 in Figure 7.

10.3.4 Iterative processing of READ-NEXT-RECORD paragraph

Once all statements in the WRITE-RECORD paragraph are executed, then control is returned to the
READ-NEXT-RECORD paragraph where the next sentence to be executed is the second PERFORM
READ-RECORD statement.

Again, the READ-RECORD paragraph executes the COBOL READ statement, resulting in the external
sequential file populating the variables associated with ACCT-REC internal file name. If ‘AT END’ of records
read, Y is moved into the LASTREC variable, then returns control to READ-NEXT-RECORD paragraph.
The READ-NEXT-RECORD paragraph would continue the iterative process UNTIL Y is found in the
LASTREC variable. Observe #3 in Figure 7.

80

Figure 7. Iterative processing

10.4 Lab
The lab associated with this chapter demonstrates the ‘end-of-file’ COBOL coding technique for reading all
data records from a sequential file. If a step has an asterisk (*) next to it, it will have a hint associated at
the end of the lab content.

1. If not already, open VSCode and select Zowe Explorer from the left sidebar.

Note : If you are opening a new instance of VSCode (i.e. you closed out of it after the previous usage),
you may need to ‘Select a filter’ again. You can do so by selecting the search icon next to your named
connection in the DATA SETS section and then reselecting the filter previously used. It should be in the
listed filters after you have selected the search symbol.

2. View these COBOL source code members listed in the id.CBL data set:

• CBL0001

• CBL0002

3. View these three JCL members in the id.JCL data set:

• CBL0001J

• CBL0002J

• CBL0033J

Figure 8. Id.JCL(CBL0001J).jcl

4. Submit job, JCL(CBL0001J), within the DATA SET section.

5. View that job output using the JOBS section.

• COBRUN:SYSPRINT(101) - COBOL program compiler output

• RUN:PRTLINE(103) - COBOL program execution output, shown in Figure 9.

81

Figure 9. RUN:PRTLINE(103) for JCL(CBL0001J)

6. Submit job, JCL(CBL0002J), within the DATA SET section.

7. View that job output using the JOBS section.

• COBRUN:SYSPRINT(101) - COBOL program compiler output

Locate COBOL compiler severe message IGYPS2121-S within the output file referred to in step 7,
shown in Figure 10.

Figure 10. IGYPS2121-S message

8. Edit CBL(CBL0002):

• Determine appropriate spelling of PRINT-REX, correct it within the source code and save the
updated source code.

9. Re-submit job, JCL(CBL0002J), using the DATA SET section and view the output in the JOBS section.

• COBRUN:SYSPRINT(101) COBOL program compiler output

• RUN:PRTLINE(103) is the COBOL program execution output (if correction is successful)

10. Submit job, JCL(CBL0033J), using the DATA SET section.

11. View CBL0033J ABENDU4038 output, using the JOBS section:

• View the IGZ00355 abend message in RUN:SYSOUT(104) from the COBOL program execution
output.

• IGZ00355 reads, program is unable to open or close ACCTREC file name, shown in Figure 11. guiding
you to the root of the error.

82

Figure 11. RUN:SYSOUT(104) message

12. Fix this error by editing JCL(CBL0033J):

• Determine the DDNAME needed, but missing or misspelled.

• Correct it within the code and save

13. Re-submit job, JCL(CBL0033J), using the DATA SET section.

14. View CBL0033J output using the JOBS section, your output should look like Figure 12.

• RUN:PRTLINE - COBOL program execution output (if correction is successful)

Figure 12. RUN:PRTLINE(103) for JCL(CBL0033J)

Lab hints

13. The error is located on line 11, adjust ‘ACCTREX’ accordingly.

Figure 13. Error in id.JCL(CBL0033J).jcl

83

11 Program structure
In this chapter we discuss the concept of structured programming and how it relates to COBOL. We highlight
the key techniques within the COBOL language that allow you to write good well-structured programs.

• Styles of programming

– What is structured programming

– What is Object Orientated Programming

– COBOL programming style

• Structure of the Procedure Division

– Program control and flow through a basic program

– Inline and out of line perform statements

– Using performs to code a loop

– Learning bad behavior using the GO TO keyword

• Paragraphs as blocks of code

– Designing the content of a paragraph

– Order and naming of paragraphs

• Program control with paragraphs

– PERFORM TIMES

– PERFORM THROUGH

– PERFORM UNTIL

– PERFORM VARYING

• Using subprograms

– Specifying the target program

– Specifying program variables

– Specifying the return value

• Summary

• Lab

11.1 Styles of programming
Before we discuss in more detail how to structure a program written in COBOL, it’s important to understand
the type of language COBOL is and how it’s both different from other languages and how it affects the way
you might structure your programs.

11.1.1 What is structured programming

Structured programming is the name given to a set of programming styles that could include functional,
procedural amongst others. Structured programming technique results in program logic being easier to
understand and maintain. Examples of structured programming languages are C, PL/I, Python and of course,
COBOL. These languages, given specific control flow structures such as loops, functions and methods, allow
a programmer to organize their code in a meaningful way.

Unstructured programming constructs, also known as spaghetti code, are concepts such as GOTO or JUMP
which allow the flow of execution to branch wildly around the source code. Such code like this is hard to

84

analyze and read. Although COBOL does contain these structures, it is important to use them sparingly and
not as the backbone of well-structured code.

Well-structured code is both easy to understand and to maintain. It is highly likely that at some point in
your career you will be required to read and work from someone else’s code, often a decade after it was
originally written. It would be extremely helpful to you if the original author structured their code well and
likewise if it is your code someone else is reading.

11.1.2 What is Object Orientated Programming

Object Orientated programming, or OO programming, differs from structured programming, although it
borrows a lot of the same concepts. In OO programming, code is split up into multiple classes, each
representing an actor within the system. Each class is made up of variables and a sequence of methods.
Instantiations of a class or objects can execute methods of another object. Each class within an OO program
can be considered a structured program, as it will still contain methods and iteration constructs. However, it
is the composition of the program from a set of individual classes that makes OO programming different.
It is possible to write Object Orientated COBOL; however, it is not supported by some of the middleware
products that provide COBOL APIs. It is not generally used within the market and so it is not covered in
this course.

11.1.3 COBOL programming style

COBOL doesn’t directly have some of the components of a structured programming language as you may
know them if you have studied a language like C or Java. COBOL doesn’t contain for or while loops, nor
does it contain defined functions or methods. Because COBOL is meant to be a language that is easy to read
these concepts are embodied through the use of the PERFORM keyword and the concept of paragraphs.
This allows the programmer to still create these structures, but in a way that is easy to read and follow.

11.2 Structure of the Procedure Division
As you already know, a COBOL program is split into several divisions, including identification, environment
and data. However, this chapter concerns itself with how you structure the content of the procedure division
to be easy to read, understandable and maintainable in the future.

11.2.1 Program control and flow through a basic program

Typically, execution in a COBOL program begins at the first statement within the procedure division and
progresses sequentially through each line until it reaches the end of the source code. For example, take a look
at Example 1. Snippet from TOTEN1. This is a simple program that displays a simple message counting to
ten.

OPEN OUTPUT PRINT -LINE.

MOVE 'THE NUMBER IS: ' TO MSG - HEADER OF PRINT -REC.

ADD 1 TO COUNTER GIVING COUNTER .
MOVE COUNTER TO MSG -TO -WRITE.
WRITE PRINT -REC.

ADD 1 TO COUNTER GIVING COUNTER .
MOVE COUNTER TO MSG -TO -WRITE.
WRITE PRINT -REC.

...

CLOSE PRINT -LINE.

85

STOP RUN.

Example 1. Snippet from TOTEN1

Although this code is very simple to read, it’s not very elegant, there is a lot of code repetition as the number
is increased. Obviously, we want to provide some structure to the program. There are three keywords that
we can use to transfer control to a different section of the source code and provide the structure we need.
These keywords are PERFORM, GO TO and CALL.

11.2.2 Inline and out of line perform statements

The PERFORM keyword is a very flexible element of the COBOL language, as it allows functions and loops
to be entered. At the most basic level, a PERFORM allows control to be transferred to another section of
the code. Once this section has executed, control returns to the following line of code. Take the following
example:

OPEN OUTPUT PRINT -LINE.

MOVE 'THE NUMBER IS: ' TO MSG - HEADER OF PRINT -REC.

PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .

CLOSE PRINT -LINE.
STOP RUN.

WRITE -NEW - RECORD .
ADD 1 TO COUNTER GIVING COUNTER
MOVE COUNTER TO MSG -TO -WRITE
WRITE PRINT -REC.

Example 2. Snippet from TOTEN2

In this example, the three lines of code that constructed a new line of output and printed it has been extracted
into a new paragraph called WRITE-NEW-RECORD. This paragraph is then performed ten times by use of
the PERFORM keyword. Each time the PERFORM keyword is used, execution jumps to the paragraph
WRITE-NEW-RECORD, executes the three lines contained within that paragraph before returning to the
line following the PERFORM statement. The concept of a paragraph will be covered later in this chapter in
more depth.

11.2.3 Using performs to code a loop

The code we have built so far is still not optimal, the repetition of the perform statement ten times is inelegant
and can be optimized. Observe the following snippet of code:

MOVE 'THE NUMBER IS: ' TO MSG - HEADER OF PRINT -REC.

86

PERFORM VARYING COUNTER FROM 01 BY 1 UNTIL COUNTER EQUAL 11
MOVE COUNTER TO MSG -TO -WRITE
WRITE PRINT -REC
END - PERFORM .

CLOSE PRINT -LINE.
STOP RUN.

Example 3. Snippet from TOTEN2

In this example, we are using the PERFORM keyword in a way that is similar to a for loop in other languages.
The loop runs from the PERFORM keyword to the END-PERFORM keyword. Each time execution iterates
over the loop, the value of COUNTER is incremented and tested by one. For comparison, the same loop
would be written in Java like so:

for(int counter =0; counter <11; counter ++){
// move counter to msg -to -write
// write print -rec

}

Example 4. Java example

Although the COBOL version is perhaps more verbose than a for loop in other languages, it is easier to read,
and remember you always have autocomplete (if you are using a good editor) to help you with the typing.

11.2.4 Learning bad behavior using the GO TO keyword

Programmers tend to have strong beliefs about choice of editor, tabs or spaces and many heated discussions
have been had on such subjects. However, if there is one thing that we can agree on, it is that use of GO
TO is usually a bad idea. To demonstrate why GO TO can be a poor idea, we will take a look at TOTEN2
again, and replace the second instance of the PERFORM keyword with a GO TO, shown in Example 5.

PERFORM WRITE -NEW - RECORD .
GO TO WRITE -NEW - RECORD .
PERFORM WRITE -NEW - RECORD .

Example 5. GO TO example

If we were to compile and run the program, you would see that although the job ABENDS (abnormally ends)
with a 4038-abend code, it did execute some of the code and wrote the first two lines of the output. If you
were to look at the output in more detail, you would see a message like the following:

IGZ0037S The flow of control in program TOTEN1 proceeded beyond the last
line of the program .

Example 6. Abend from GO TO example

So, what went so terribly wrong when we used the GO TO command? To answer this, we need to understand
the key difference between GO TO and PERFORM. On the first line we used the PERFORM keyword, that
transferred control to the WRITE-NEW-RECORD paragraph. Once the execution reached the end of that
paragraph, execution returned to the line following the PERFORM statement. The next line used the GOTO
keyword to again transfer control to the WRITE-NEW-RECORD paragraph, which prints the second line
of output. However, when that paragraph completed, execution continued to the next line following the
WRITE-NEW-RECORD paragraph. Since there are no lines of code following that paragraph the processor
tried to execute code beyond the program, z/OS caught this as a problem and abended the program.

As we can see, the use of GO TO causes a branch of execution that doesn’t return to the line of code that
issued it. Let’s demonstrate how messy this code can get:

87

0 01 FLAG PIC 9(1) VALUE 1.

1 OPEN OUTPUT PRINT -LINE.
2 GO TO SAY -HELLO -WORLD DEPENDING ON FLAG.
3
4 PRINT -NEW - MESSAGE .
5 MOVE 2 TO FLAG
6 GO TO SAY -HELLO -COBOL DEPENDING ON FLAG
7 GO TO END -RUN.
8
9 SAY -HELLO -WORLD.
10 MOVE "Hello World" TO MSG -TO -WRITE
11 WRITE PRINT -REC
12 GO TO PRINT -NEW - MESSAGE .
13
14 SAY -HELLO -COBOL.
15 MOVE "Hello COBOL" TO MSG -TO -WRITE
16 WRITE PRINT -REC
17 GO TO END -RUN.
18
19 END -RUN.
20 CLOSE PRINT -LINE
21 STOP RUN.

Example 7. Messy code using GO TO

This example is using a mix of conditional and non-conditional GO TO statements, and there are included
line numbers to make following the code easier. Line 2 executes and will branch to SAY-HELLO-WORLD on
line 9, if the flag variable is set to 1. In this case, it is, so we progress through lines 9-12 and branch to lines
4-6 where the value of the flag is updated and tested again to see if we should jump to SAY-HELLO-COBOL.
Since the value of flag is no longer 1, execution just continues to line 7 before jumping to line 19 and finishing
the run. Take this program and comment out line 5 and run the program again. Track the execution of the
program. Messy right?

Note: Both the TO and ON parts of the conditional GO TO statement can be omitted, giving a statement
that looks like GO SAY-HELLO-WORLD DEPENDING FLAG. Which although is less verbose, is no less
easy to understand.

So why teach you something that we have said is messy and not advised? Well, by giving you some
understanding of its behavior, you will be better equipped when looking through existing code and maintaining
it.

11.3 Paragraphs as blocks of code
So far in this section we have used a few examples of paragraphs without really explaining what they are,
how they work and what they can be used for. This section addresses that.

The most analogous way to think about a paragraph in COBOL is to think of a function or method in
another language that accepts no parameters, returns no response and alters global variables. It is basically a
block of code that performs a sequence of actions that could be used multiple times within the same program.

A paragraph is defined within the procedure division and starts at column eight and can have any name
that the user likes, apart from a COBOL keyword, and the declaration of the paragraph is completed with a
period (.). A paragraph can contain one to many COBOL sentences and is terminated either by the start of
another paragraph or the physical end of the program.

88

Note: A paragraph can also be ended by END-PROGRAM, END-METHOD, END FACTORY OR END-
OBJECT. Most of these are used within Object Orientated COBOL which is not discussed here.

Considering that a program can be made up of multiple paragraphs and that the PERFORM keyword can
be used to call the paragraph, either conditionally or as part of a loop, it is easy to see that good paragraph
design really helps makes your COBOL more structured and readable.

11.3.1 Designing the content of a paragraph

There are no restrictions as to what content can go inside a paragraph, however, there are two main reasons
why you might want to refactor code to be inside a paragraph:

1. To group a sequence of COBOL sentences together that achieve a particular function or task, such as,
open all the files that an application is using, calculate a particular function or perform some data
validation. Grouping such sentences into a paragraph allows you to give them a name that explains the
purpose of the lines of code.

2. The sequence of sentences will be used within a loop. Extracting these lines into a paragraph and then
using the PERFORM keyword to create a loop can make for very comprehensible code.

Remember that you can also perform other paragraphs within existing paragraphs. This nested calling of
paragraphs can again, help to structure your code.

11.3.2 Order and naming of paragraphs

There is no requirement about the order that paragraphs should appear within a COBOL program. A
paragraph can be called from a point either before or after where it is declared. Although there are no
restrictions enforced by the language, there are some techniques that you can follow that will make larger
programs easier to follow and understand. Some of these techniques and best practices are:

• Name each paragraph to correspond with its function or behavior. A paragraph named OPEN-INPUT-
FILES. is a lot more understandable than one named DO-FILE-STUFF.

• Order the paragraphs in the general order in which they will be executed at runtime. Doing this has
two main advantages. Using the outline view in a modern IDE will allow you to ‘read’ the name of
each paragraph from top to bottom, in doing so you will be able to establish the general structure of
the program and its behavior.

• Some COBOL programmers prefix the name of paragraphs with a number that increases throughout
the source code as per Example 8.

• Because the paragraphs are numbered and appear in the source code in that order, when a sentence
references a paragraph it is easier to know where in the program that paragraph might appear. When
initially structuring a program in this way, the numbers used would only increment the highest significant
figure, allowing for new paragraphs to be inserted in between if needed. Although the rise of modern
editors, which allow outlining and instant jumping to a reference or declaration, makes this technique
of less necessity, it is still useful to understand.

PERFORM 1000 - OPEN -FILES.
PERFORM 2000 - READ -NEXT - RECORD .
GO TO 3000 - CLOSE -STOP.

1000 - OPEN -FILES.
OPEN INPUT ACCT -REC.
OPEN OUTPUT PRINT -LINE.

*
2000 - READ -NEXT - RECORD .

PERFORM 4000 - READ - RECORD
PERFORM UNTIL LASTREC = 'Y'
PERFORM 5000 - WRITE - RECORD

89

PERFORM 4000 - READ - RECORD
END - PERFORM .

*
3000 - CLOSE -STOP.

CLOSE ACCT -REC.
CLOSE PRINT -LINE.
STOP RUN.

*
4000 - READ - RECORD .

READ ACCT -REC
AT END MOVE 'Y' TO LASTREC
END -READ.

*
5000 - WRITE - RECORD .

MOVE ACCT -N - TO ACCT -NO -O.
MOVE ACCT -LIMIT TO ACCT -LIMIT -O.
MOVE ACCT - BALANCE TO ACCT -BALANCE -O.
MOVE LAST -NAME TO LAST -NAME -O.
MOVE FIRST -NAME TO FIRST -NAME -O.
MOVE COMMENTS TO COMMENTS -O.
WRITE PRINT -REC.

Example 8. Numbered paragraphs

• Lastly, it is common to explicitly end a paragraph by coding an empty paragraph following each
paragraph, see Example 9. This empty paragraph does not contain any code, has the same name as
the paragraph it is closing, suffixed with -END and is in turn closed by the starting of a following
paragraph. But it can be used as a visual delimiter and is useful when using the PERFORM THRU
keyword, which is discussed further on in this chapter. Some Java programmers who have learned
COBOL have commented that it is equivalent to the closing brace (“}”) at the end of a block of code.

1000 - OPEN -FILES.
OPEN INPUT ACCT -REC.
OPEN OUTPUT PRINT -LINE.

1000 - OPEN -FILES -END.
*

2000 - READ -NEXT - RECORD .
PERFORM 4000 - READ - RECORD
PERFORM UNTIL LASTREC = 'Y'
PERFORM 5000 - WRITE - RECORD
PERFORM 4000 - READ - RECORD
END - PERFORM .

2000 - READ -NEXT -RECORD -END.

Example 9. Explicitly closed paragraphs

11.4 Program control with paragraphs
So far in this chapter we have discussed the importance of using paragraphs to structure your code. In
doing this, we have used the PERFORM keyword a few times to execute the paragraphs we had created.
Specifically, we used the keyword by itself and used it with the VARYING keyword to construct a loop. In
this section, we will discuss in more detail how the PERFORM keyword can be used.

90

11.4.1 PERFORM TIMES

Perhaps the simplest way of repeating a perform statement is to use the TIMES keyword to perform a
paragraph or sections of code a static number of times, shown in Example 10.

PERFORM 10 TIMES
MOVE FIELD -A TO FIELD -B
WRITE RECORD

END - PERFORM .

Example 10. TIMES

The required number of times that the code should be executed can either be a literal, as above, or the value
of a numeric variable as shown in Example 11. where the PERFORM keyword is being used to execute a
paragraph.

PERFORM MY -NEW - PARAGRAPH COUNTER TIMES.

Example 11. TIMES 2

11.4.2 PERFORM THROUGH

You may require a sequential list of paragraphs to be executed in turn, instead of performing them individually.
The THROUGH or THRU keyword can be used to list the start and end paragraphs of the list. Execution
will progress through each of the paragraphs as they appear in the source code, from beginning to end, before
returning to the line following the initial perform statement, observe Example 12.

1000 - PARAGRAPH -A.
PERFORM 2000 - PARAGRAPH -B THRU

3000 - PARAGRAPH -C.
*

2000 - PARAGRAPH -B.
...

*
3000 - PARAGRAPH -C.

...
*

4000 - PARAGRAPH -D.
...

Example 12. PEFORM THRU

Note: The use of the THRU keyword can also be used alongside the TIMES, UNTIL and VARYING
keywords, to allow the list of paragraphs to be executed rather than just a single paragraph or blocks of code.

11.4.3 PERFORM UNTIL

Adding the UNTIL keyword to a perform sentence allows you to iterate over a group of sentences until
the Boolean condition is met. Effectively allowing you to program while loops in COBOL, take this basic
example:

MOVE 0 TO COUNTER .
PERFORM UNTIL COUNTER = 10

ADD 1 TO COUNTER GIVING COUNTER
MOVE COUNTER TO MSG -TO -WRITE
WRITE PRINT -REC

END - PERFORM .

91

Example 13. PERFORM UNTIL

This would be equivalent to the Java code:

while(counter != 10){
// counter ++
// move counter to msg -to -write
// write print -rec

}

Example 14. Java while loop

In this case, the Boolean condition is evaluated before the loop is executed. However, if you wish for the loop
to be executed at least once before the condition is evaluated, you can alter the sentence to read:

PERFORM UNTIL COUNTER = 10 WITH TEST AFTER
ADD 1 TO COUNTER GIVING COUNTER
MOVE COUNTER TO MSG -TO -WRITE
WRITE PRINT -REC

END - PERFORM .

Example 15. PERFORM UNTIL WITH TEST AFTER

This would be similar to a “do while” loop in Java:

do{
// counter ++
// move counter to msg -to -write
// write print -rec

}
While(counter != 10);

Example 16. Java while loop

11.4.4 PERFORM VARYING

We’ve already used the VARYING keyword earlier in the section titled Using performs to code a loop, recall:

PERFORM VARYING COUNTER FROM 01 BY 1 UNTIL COUNTER EQUAL 11
...
END - PERFORM .

Example 17. Basic loop

In this example, the variable counter is tested to see if it equals 11, as long as it doesn’t then it is incremented,
and the sentences nested within the perform statement are executed. This construct can be extended,
exemplified in Example 18.

PERFORM VARYING COUNTER FROM 01 BY 1 UNTIL COUNTER EQUAL 11
AFTER COUNTER -2 FROM 01 BY 1 UNTIL COUNTER -2 EQUAL 5

...
END - PERFORM .

Example 18. Extended loop

This may seem complex, but compare it to this Java pseudo-code:

for(int counter = 0; counter < 11; counter ++){
for(int counter2 = 0; counter2 < 5; counter2 ++{

// move counter to msg -to -write

92

// write print -rec
}

}

Example 19. Java extended loop

This is really, just two for loops nested within each other. This construct is very useful when iterating over
tables or nested record structures. As for each loop of the outer varying loop, the inner loop will be executed
five times. As mentioned previously, the test of the condition will be assumed by COBOL to be at the
beginning of the loop, however, it can be specified to be evaluated at the end of the loop by adding the phrase
WITH TEST AFTER to the initial perform sentence.

11.5 Using subprograms
So far, we have only examined the internal structure of a single COBOL program. As programs increase in
function and number, it is common that a programmer might want certain aspects of a programs function to
be made available to other programs within the system. Abstracting generic functions into their own program
and allowing them to be called from other programs can reduce the amount of code duplication within a
system and therefore decrease the cost of maintenance, as fixes to shared modules only need to be made once.

Note: Although here we will describe the COBOL native way of calling another program, note that some
middleware products will provide APIs that might do this in an enhanced way.

When calling another program, we need to consider three main concerns: how we will reference the program
we wish to call, the parameters we want to send to the target program and the parameter that we wish the
target program to return.

11.5.1 Specifying the target program

To call a target program we will use the keyword CALL followed by a reference to the target program we wish
to call. The two main ways to do this are by a literal value or by referencing a variable, shown in Example 20.

CALL 'PROGA1 ' ...
...
MOVE 'PROGA2 ' TO PROGRAM -NAME.
CALL PROGRAM -NAME ...

Example 20. Basic CALL

It is also possible to reference the target platform by passing a pointer reference to the target program. If
you thought that passing a pointer reference to a function was only something that ultra-modern languages
had, nope COBOL got there first!

11.5.2 Specifying program variables

Now that we have identified the name of the program we wish to call; we must identify the variables that
the calling program might want to send. These are individually specified by the USING keyword. COBOL
provides support to both pass by reference and pass by copy, as well as a pass by value concept. Each of the
supported passing techniques can be applied to all the data-items being passed or used selectively against
different items.

By default, COBOL will pass data items by reference. This means that both the calling and target program
will be able to read and write to the same area of memory that is represented by the variable. This means
that if the target program updates the content of the variable, that change will be visible to the calling
program once execution has returned.

The BY CONTENT phrase allows a copy of the passed variable to be passed to the target program. Although
the target program can update the variable, those updates will not be visible to the calling program.

93

Note: When passing variables either BY REFERENCE or BY CONTENT, note you can send data items of
any level. Which means you can pass entire data structures, handy for dealing with common records.

You might also see the phrase, BY VALUE, being used in a CALL sentence. BY VALUE is similar to BY
CONTENT, as a copy of the content of the variable is passed. The difference is that only a subset of COBOL
datatypes are supported and you can only specify elementary data-items. This is because BY VALUE is
primarily used when COBOL is calling a program of another language (such as C).

11.5.3 Specifying the return value

Finally, the RETURNING phrase is used to specify the variable that should be used to store the return
value. This can be any elementary data-item declared within the data-division. Note that this is optional.
Some programs might not return anything, or you might have passed values BY REFERENCE to the target
program in which case updates to those variables will be visible once the target program returns.

11.6 Summary
In summary, this chapter should provide the necessary foundation to understand structured programming
and how it relates to COBOL and its importance to understanding and maintaining code. Many examples of
how, when and why to implement key techniques have been provided and explained for further understanding.
You should be able to identify the basic differences between structured programming (COBOL) and OO
programming (Java). You should also understand the general concept of the best practices in the structure of
the Procedure Division with reference to the design and content of paragraphs, program control options and
ways to call other programs within the same system.

11.7 Lab
This lab utilizes COBOL program CBL0003, located within your id.CBL data set, as well as JCL job
CBL0003J, located within your id.JCL data set. The JCL jobs are used to compile and execute the COBOL
programs, as discussed in previous chapters.

11.7.0.1 Using VSCode and Zowe Explorer

1. Take a moment and look over the source code of the COBOL program provided: CBL0003.

2. Compare CBL0003 with CBL0001 and CBL0002 from the previous lab. Do you notice the differences?

a. Observe the new COUNTER line within the WORKING-STORAGE > DATA DIVISION.

b. Observe the paragraphs are numerated and they are all explicitly ended by a -END sentence.

c. Observe the new paragraphs READ-FIRST-RECORD, READ-TEN-RECORDS, READ-
ANOTHER-RECORD, READ-NEXT-RECORDS and CALLING-SUBPROGRAM within the
PRECEDURE DIVISION.

d. These paragraphs perform the same loop as in CBL0001, but using the PERFORM statement in
different ways. The CALLING-SUBPROGRAM calls the HELLO program, already presented in
the second Lab of this course.

3. Submit job: CBL0003J. This JCL first compiles the program HELLO, then compiles CBL0003 and
links the result of both compilations together.

4. View CBL0003J output using the JOBS section and open RUN:PRTLINE, observe the report is identical
to CBL0001.

5. View output of target program HELLO using the JOBS section and open RUN:SYSOUT.

94

12 File output
Designing a structured layout that is easy to read and understand is required to format output. Designing a
structured layout involves column headings and variable alignment using spaces, numeric format, currency
format, etc. This chapter aims to explain this concept utilizing example COBOL code to design column
headings and align data names under the such headings. At the end of the chapter you are asked to complete
a lab that practices implementation of the components covered.

A capability of COBOL data output formatting that is worth noting but not covered in this chapter is that
COBOL is a web enabled computer language. COBOL includes easy and quick transformation of existing
COBOL code to write JSON (JavaScript Object Notation) where the output is subsequently formatted for a
browser, a smartphone, etc. Frequently, the critical data accessed by a smart phone, such as a bank balance,
is stored and controlled by z/OS where a COBOL program is responsible for retrieving and returning the
bank balance to the smart phone.

• Review of COBOL write output process

– ENVIRONMENT DIVISION

• FILE DESCRIPTOR

– FILLER

• Report and column headers

– HEADER-2

• PROCEDURE DIVISION

– MOVE sentence

– PRINT-REC FROM sentences

• Lab

12.1 Review of COBOL write output process
This section briefly reviews certain aspects of the ENVIRONMENT DIVISION for the purpose of under-
standing how it ties together with the content of this chapter.

12.1.1 ENVIRONMENT DIVISION

The “File handling” section covered the SELECT and respective ASSIGN programmer chosen names, whereas
this chapter focuses on output. Figure 1. shows a coding example using PRINT-LINE as the programmer
chosen COBOL internal file name for output.

95

Figure 1. SELECT and ASSIGN

12.2 FILE DESCRIPTOR
The File Description (FD), previously described under the FILE-CONTROL paragraph section, entry
represents the highest level of organization in the FILE SECTION. The FD entry describes the layout of
the file defined by a previous FILE-CONTROL SELECT statement. Therefore, the FD entry connects the
SELECT file name with a defined layout of the file name. An example file descriptor, FD, for PRINT-LINE
is shown in Figure 2. What follows the file descriptor is a defined layout of PRINT-LINE.

12.2.1 FILLER

Observe the data name FILLER. While most data fields have unique names, FILLER is a COBOL reserved
word data name, that is useful for output formatting. This is in part because FILLER allocates memory
space without the need for a name. Also, FILLER allocated memory has a defined length in the output line
and may contain spaces or any literal. Figure 2. shows multiple VALUE SPACES for FILLER. SPACES
create white space between data-items in the output which is valuable in keeping the code readable. More
specifically in Figure 2. FILLER PIC X(02) VALUE SPACES, represents the output line containing two
spaces.

Figure 2. FILLER

12.3 Report and column headers
Writing report or column headers requires a structured output layout designed by the programmer. Figure
3. illustrates such a structure. The designed output structure layout is implemented within the DATA

96

DIVISION and includes the headers listed and defined below.

• HEADER-1:

– Writes a literal

– Example: ‘Financial Report for’

• HEADER-2:

– Writes literals

– Examples:

∗ ‘Year’ followed by a variable name

∗ ‘Month’ followed by a variable name

∗ ‘Day’ followed by a variable name

• HEADER-3:

– Writes literals

– Examples:

∗ ‘Account’ followed by FILLER spacing

∗ ‘Last Name’ followed by FILLER spacing

∗ ‘Limit’ followed by FILLER spacing

∗ ‘Balance; followed by FILLER spacing

• HEADER-4:

– Writes dashes followed by FILLER spacing

97

Figure 3. Designed output structure layout

12.3.1 HEADER-2

HEADER-2 includes the year, month, day of the report together with FILLER area, creating blank spaces
between the year, month, and day, as you can see in Figure 3. Figure 4. is an example of the data name
layout used to store the values of CURRENT-DATE. The information COBOL provides in CURRENT-DATE
is used to populate the output file in HEADER-2.

98

Figure 4. CURRENT-DATE intrinsic function

12.4 PROCEDURE DIVISION
Figures 1 through 4 are a designed data layout that includes a data line and report headers. Using the storage
mapped by the data line and report headers, COBOL processing logic can write the headers followed by each
data line. Figure 5. is an example of an execution logic resulting used to write the header layout structure in
a COBOL program.

Figure 5. Execution logic to write header layout structure

12.4.1 MOVE sentences

The COBOL MOVE sentence, on line 1, in the WRITE-HEADERS paragraph is collecting the current date
information from the system and storing that information in a defined data name layout, WS-CURRENT-
DATE-DATA. The use of the reserved word FUNCTION means whatever follows is a COBOL intrinsic
function. The sentences on lines 2, 3, and 4 are storing the date information, year, month and day, in
HEADER-2 defined data name areas, HDR-YR, HDR-MO and HDR-DAY. The sentence on line 11, the
final sentence in the paragraph, writes spaces into the PRINT-REC area to clear out the line storage in
preparation for writing the data lines.

12.4.2 PRINT-REC FROM sentences

PRINT-REC is opened for output resulting in PRINT-REC FROM following through with a write PRINT-
REC FROM a different header or defined data name layout. The sentences on lines 5 and 6 write the

99

PRINT-REC FROM defined header data names, HEADER-1 and HEADER-2, from Figure 3. The PRINT-
REC file descriptor data names in Figure 2. are effectively replaced with the content of the header data
names in Figure 3. written to output. The sentences on lines 7 and 8 result in a blank line written between
headers. The sentences on lines 9 and 10 write the PRINT-REC FROM defined HEADER-3 and HEADER-4
data names from Figure 3. The PRINT-REC file descriptor data names in Figure 2. are effectively replaced
with the content of the header data names in Figure 3.

12.5 Lab
This lab utilizes two COBOL programs, CBL0004 and CBL0005, located within your id.CBL data set, as
well as two JCL jobs, CBL0004J and CBL0005J, located within your id.JCL data set. The JCL jobs are used
to compile and execute the COBOL programs, as discussed in previous chapters.

12.5.0.1 Using VSCode and Zowe Explorer

1. Submit job: CBL0004J

2. Observe the report written with headers like Figure 6. below.

Figure 6. Report with headers

3. Submit job: CBL0005J

4. Observe the report data lines are written without dollar currency symbol, illustrated in Figure 7.

Figure 7. No currency symbol in output

5. Modify id.CBL(CBL0005) to include the dollar currency symbol in the report.

Hint: Compare with CBL0004 line 25

6. Re-submit job: CBL0005J

7. Observe the report data lines should now include the dollar currency symbol.

Figure 8. Currency symbol added to output

100

13 Conditional expressions
This chapter dives into how programs make decisions based upon the programmer written logic. Specifically,
programs make these decisions within the PROCEDURE DIVISION of the source code. We will expand on
several topics regarding conditional expressions written in COBOL through useful explanations, examples
and eventually practicing implementation through a lab.

• Boolean logic, operators, operands, and identifiers

– COBOL conditional expressions and operators

– Examples of conditional expressions using Boolean operators

• Conditional expression reserved words and terminology

– IF, EVALUATE, PERFORM and SEARCH

– Conditional states

– Conditional names

• Conditional operators

• Conditional expressions

– IF ELSE (THEN) statements

– EVALUATE statements

– PERFORM statements

– SEARCH statements

• Conditions

– Relation conditions

– Class conditions

– Sign conditions

• Lab

13.1 Boolean logic, operators, operands, and identifiers
Programs make decisions based upon the programmer written logic. Program decisions are made using
Boolean logic where a conditional expression is either true or false, yes or no. A simple example would
be a variable named ‘LANGUAGE’. Many programming languages exist; therefore, the value of variable
LANGUAGE could be Java, COBOL, etc. . . Assume the value of LANGUAGE is COBOL. Boolean logic is,
IF LANGUAGE = COBOL, THEN DISPLAY COBOL, ELSE DISPLAY NOT COBOL. IF triggers the
Boolean logic to determine the condition of true/false, yes/no, applied to LANGUAGE = COBOL which is
the conditional expression. The result of IF condition executes what follows THEN when the condition is
true and executes what follows ELSE when the condition is false.

The Boolean IF verb operates on two operands or identifiers. In the example above, LANGUAGE is an
operand and COBOL is an operand. A Boolean relational operator compares the values of each operand.

13.1.1 COBOL conditional expressions and operators

Three of the most common type of COBOL conditional expressions are:

1. General relation condition

2. Class condition

3. Sign condition

101

A list of COBOL Boolean relational operators for each of the common type of COBOL conditional expressions
are represented in Figures 1, 2 and 3 below.

Figure 1. General relation condition operators

Figure 2. Class condition operators

Figure 3. Sign condition operators

13.1.2 Examples of conditional expressions using Boolean operators

A simple conditional expression can be written as:

IF 5 > 1 THEN DISPLAY '5 is greater than 1' ELSE DISPLAY '1 is greater than 5'.

Compounded conditional expressions are enclosed in parenthesis and their Boolean operators are:

AND

OR

The code snippet below demonstrates a compounded conditional expression using the AND Boolean operator.

IF (5 > 1 AND 1 > 2)THEN ELSE

102

This conditional expression evaluates to false because while 5 > 1 is true, 1 > 2 is false. The AND operation
requires both expressions to be true to return true for the compounded condition expression. Let’s show
another implementation, this time using the OR Boolean operator.

IF (5 > 1 OR 1 > 2)THEN ELSE

This conditional expression evaluates to true because while 1 > 2 is false, 5 > 1 is true. The OR operation
requires only one of the expressions to be true to return true for the entire compounded condition expression.
More conditional operators used for relation, class, and sign conditions are discussed further on in the chapter.

13.2 Conditional expression reserved words and terminology
Thus far in this book, we have touched upon the necessity and use of COBOL reserved words. This section
aims to expand on the topic of reserved words, specifically ones that are used when processing conditional
expressions.

13.2.1 IF, EVALUATE, PERFORM and SEARCH

These are COBOL reserved words available for the processing of conditional expressions, where a condition is
a state that can be set or changed.

13.2.2 Conditional states

TRUE and FALSE are among the most common conditional states.

13.2.3 Conditional names

A conditional-name is a programmer defined variable name with the TRUE condition state. Conditional
names are declared in the WORKING STORAGE SECTION with an 88-level number. The purpose of
88-level is to improve readability by simplifying IF and PERFORM UNTIL statements.

The 88-level conditional data-name is assigned a value at compile time. The program cannot change the
88-level data-name during program execution. However, the program can change the data name value in
the level number above the 88-level conditional data-name. 01-level USA-STATE in Example 1. can be
changed. A program expression referencing the 88-level data-name is only true when the current value of
the preceding level data name, USA-STATE, is equal to the WORKING-STORAGE 88-level conditional
data-name assigned value.

Observe in Example 1. ‘The State is not Texas’ is written as a result of the first IF STATE because the value
of USA-STATE is AZ which is not equal to the 88-level conditional data-name, TX. The second IF STATE
writes, ‘The State is Texas’ because the value of USA-STATE is equal to the assigned 88-level value of TX.
WORKING - STORAGE .
01 USA -STATE PIC X(2) VALUE SPACES .

88 STATE VALUE 'TX '.
....
....
PROCEDURE DIVISION .
....
....
MOVE 'AZ ' TO USA -STATE.
....
....
IF STATE DISPLAY 'The State is Texas '

ELSE DISPLAY 'The State is not Texas '
END -IF.
....
....

103

MOVE 'TX ' TO USA -STATE.
....
....
IF STATE DISPLAY 'The State is Texas '

ELSE DISPLAY 'The State is not Texas '
END -IF.

Example 1. Using 88-level conditional name

Numerous 88-level conditional data-names can follow an 01-level data-name. As a result an IF reference to
01-level data-name expression can have numerous values that would return true.

Other level number data-names require the condition expression to include a Boolean operator as shown in
Example 2. , where a value can be stored in the 05-level STATE data name to be compared with some other
stored value. Therefore, a little bit of extra coding is needed.

WORKING - STORAGE .
01 USA -STATE.

05 STATE PIC X(2) VALUE SPACES .
....
....
PROCEDURE DIVISION .
....
....
MOVE 'AZ ' TO STATE.
....
....
IF STATE = 'TX ' DISPLAY 'The State is Texas '

ELSE DISPLAY 'The State is not Texas '
END -IF.
....
....
MOVE 'TX ' TO STATE.
....
....
IF STATE = 'TX ' DISPLAY 'The State is Texas '

ELSE DISPLAY 'The State is not Texas '
END -IF.

Example 2. Without 88-level conditional name

13.3 Conditional operators
Relational operators compare numeric, character string, or logical data. The result of the comparison, either
true (1) or false (0), can be used to make a decision regarding program flow. Table 1 displays a list of
relational operators, how they can be written and their meaning.

Relational operator Can be written Meaning
IS GREATER THAN IS > Greater than
IS NOT GREATER THAN IS NOT > Not greater than
IS LESS THAN IS < Less than
IS NOT LESS THAN IS NOT < Not less than
IS EQUAL TO IS = Equal to
IS NOT EQUAL TO IS NOT = Not equal to
IS GREATER THAN OR EQUAL TO IS >= Is greater than or equal to

104

Relational operator Can be written Meaning
IS LESS THAN OR EQUAL TO IS <= Is less than or equal to

Table 1. Relational operator

13.4 Conditional expressions
A conditional expression causes the object program to select alternative paths of control, depending on the
truth value of a test. Conditional expressions are specified in EVALUATE, IF, PERFORM, and SEARCH
statements.

13.4.1 IF ELSE (THEN) statements

IF statements are used to implement or evaluate relational operations. IF ELSE is used to code a choice
between two processing actions and inclusion of the word THEN is optional. When an IF statement is present,
the statements following the IF statement are processed based on the truth of the conditional expression.
Statements are processed until an END-IF or an ELSE statement is encountered. The ELSE statement
can appear on any line before the END-IF. IF statements, regardless of the number of lines, are explicitly
terminated using END-IF.

Consider this, during program processing something occurs to change the value in the data-name, FACIAL-
EXP. Subsequent statements, the conditional expression, needs to check the value of the data-name to decide
on how to proceed in the program. Exemplified in Example 3. by the THEN DISPLAY and ELSE DISPLAY
statements.

IF FACIAL -EXP = 'HAPPY ' THEN
DISPLAY 'I am glad you are happy '

ELSE DISPLAY 'What can I do to make you happy '
END -IF.

Example 3. IF, THEN, ELSE, END-IF statement

13.4.2 EVALUATE statements

EVALUATE statements are used to code a choice among three or more possible actions. The explicit
terminator for an EVALUATE statement is END-EVALUATE. The EVALUATE statement is an expanded
form of the IF statement that allows you to avoid nesting IF statements, a common source of logic errors
and debugging issues. EVALUATE operates on both text string values and numerical variables. Using the
FACIAL-EXP conditional-name, observe the COBOL code implementing an EVALUATE statement, shown
in Example 4.

EVALUATE FACIAL -EXP
WHEN 'HAPPY '

DISPLAY 'I am glad you are happy '
WHEN 'SAD '

DISPLAY 'What can I do to make you happy '
WHEN 'PERPLEXED '

DISPLAY 'Can you tell me what you are confused about '
WHEN 'EMOTIONLESS '

DISPLAY 'Do you approve or disapprove '
END - EVALUATE

Example 4. EVALUATE statement

105

13.4.3 PERFORM statements

A PERFORM with UNTIL phrase is a conditional expression. In the UNTIL phrase format, the procedures
referred to are performed until the condition specified by the UNTIL phrase evaluates to true. Using the
FACIAL-EXP conditional-name, the SAY-SOMETHING-DIFFERENT paragraph is executed continuously
UNTIL FACIAL-EXP contains ‘HAPPY’, observe Example 5.

PERFORM SAY -SOMETHING - DIFFERENT BY FACIAL -EXP UNTIL 'HAPPY '
END - PERFORM .

Example 5. PERFORM statement

13.4.4 SEARCH statements

The SEARCH statement searches a table for an element that satisfies the specified condition and adjusts the
associated index to indicate that element. Tables, effectively an array of values, are created with an OCCURS
clause applied to WORK-STORAGE data-names. A WHEN clause is utilized in SEARCH statements to
verify if the element searched for satisfies the specified condition. Assuming FACIAL-EXP has many possible
values, then SEARCH WHEN is an alternative conditional expression, observe Example 6.

SEARCH FACIAL -EXP
WHEN 'HAPPY ' STOP RUN
END - SEARCH

Example 6. SEARCH WHEN statement

13.5 Conditions
A conditional expression can be specified in either simple conditions or complex conditions. Both simple
and complex conditions can be enclosed within any number of paired parentheses; the parentheses, however,
do not change whether the condition is simple or complex. This section will cover three of the five simple
conditions:

• Relation

• Class

• Sign

13.5.1 Relation conditions

A relation condition specifies the comparison of two operands. The relational operator that joins the two
operands specifies the type of comparison. The relation condition is true if the specified relation exists
between the two operands; the relation condition is false if the specified relation does not exist. Provided, is
a list of a few defined comparisons:

• Numeric comparisons - Two operands of class numeric

• Alphanumeric comparisons - Two operands of class alphanumeric

• DBCS (Double Byte Character Set) comparisons - Two operands of class DBCS

• National comparisons - Two operands of class national

13.5.2 Class conditions

The class condition determines whether the content of a data item is alphabetic, alphabetic-lower, alphabetic-
upper, numeric, DBCS, KANJI, or contains only the characters in the set of characters specified by the
CLASS clause, as defined in the SPECIAL-NAMES paragraph of the environment division. Provided below
is a list of a few valid forms on the class condition for different types of data items.

106

• Numeric

– IS NUMERIC or IS NOT NUMERIC

• Alphabetic

– IS ALPHABETIC or IS NOT ALPHABETIC

– IS ALPHABETIC-LOWER / ALPHABETIC-UPPER

– IS NOT ALPHABETIC-LOWER / ALPHABETIC-UPPER

• DBCS

– IS DBCS or IS NOT DBCS

– IS KANJI or IS NOT KANJI

13.5.3 Sign conditions

The sign condition determines whether the algebraic value of a numeric operand is greater than, less than, or
equal to zero. An unsigned operand is either POSITIVE or ZERO. When a numeric conditional variable is
defined with a sign, the following are available:

• IS POSITIVE

• IS NEGATIVE

• IS ZERO

Note : To read more information about these conditions please visit the link:

IBM Knowledge Center - Enterprise COBOL for z/OS 4.2.0

13.6 Lab
This lab requires two COBOL programs, CBL0006 and CBL0007 and two respective JCL Jobs, CBL0006J
and CBL0007J, to compile and execute the COBOL programs. All of which are provided to you in your
VSCode - Zowe Explorer.

13.6.0.1 Using VSCode and Zowe Explorer:

1. Take a moment and look over the source code of the two COBOL programs provided: CBL0006 and
CBL0007.

2. Compare CBL0006 with CBL0005 from the previous lab. Do you notice the differences?

a. Observe the new CLIENTS-PER-STATE line within the WORKING-STORAGE > PROCEDURE
DIVISION.

b. Observe the new paragraph IS-STATE-VIRGINIA within that same division.

c. This paragraph checks whether the client is from Virginia. If that condition is met (true) then the
program should add 1 to the clients from Virginia total.

d. Program writes “Virginia Clients = “, in last line of report.

3. Submit CBL0006J

4. View the job output from the JOBS section and verify the steps mentioned above were executed.

107

https://www.ibm.com/support/knowledgecenter/en/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/PGandLR/ref/rlpdsxco.htm

Figure 4. Id.JCL(CBL0006J) output

5. Submit CBL0007J

6. Find the compile error, IGYPS2113-E, in the job output.

7. Go ahead and modify id.CBL(CBL0007) to correct the syntax error outlined by the IGYPS2113-E
message.*

8. Re-submit CBL0007J

9. Validate that the syntax error was corrected by getting an error free output file.

Figure 5. Successful compile

Lab Hints

108

14 Arithmetic expressions
This chapter aims to introduce the concept of implementing arithmetic expressions in COBOL programs.
We will review the basic concept of arithmetic expressions, operators, statements, limitations, statement
operands, as well as precedence of operation within the expressions. You will be able to follow along with a
comprehensive example exhibiting the usage of arithmetic expressions in a COBOL program that you have
seen in previous chapters and labs. Following the chapter is a lab to practice the implementation of what you
have learned.

• What is an arithmetic expression?

– Arithmetic operators

– Arithmetic statements

• Arithmetic expression precedence rules

– Parentheses

• Arithmetic expression limitations

• Arithmetic statement operands

– Size of operands

• Examples of COBOL arithmetic statements

• Lab

14.1 What is an arithmetic expression?
Arithmetic expressions are used as operands of certain conditional and arithmetic statements. An arithmetic
expression can consist of any of the following items:

1. An identifier described as a numeric elementary item (including numeric functions).

2. A numeric literal.

3. The figurative constant ZERO.

4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic operators.

5. Two arithmetic expressions, as defined in items 1, 2, 3, or 4, separated by an arithmetic operator.

6. An arithmetic expression, as defined in items 1, 2, 3, 4, or 5, enclosed in parentheses.

7. Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals that appear in arithmetic expressions must represent either numeric elementary items
or numeric literals on which arithmetic can be performed. If the value of an expression to be raised to a
power is zero, the exponent must have a value greater than zero. Otherwise, the size error condition exists.
In any case where no real number exists as the result of an evaluation, the size error condition exists.

14.1.1 Arithmetic operators

Five binary arithmetic operators and two unary arithmetic operators can be used in arithmetic expressions.
These operators are represented by specific characters that must be preceded and followed by a space. However,
no space is required between a left parenthesis and unary operator. These binary and unary arithmetic
operators are listed in Table 1.

Binary operator Meaning Unary operator Meaning
+ Addition + Multiplication by +1

109

Binary operator Meaning Unary operator Meaning
- Subtraction - Multiplication by -1

Multiplication
/ Division

Exponentiation

Table 1. Arithmetic operators

14.1.2 Arithmetic statements

Arithmetic statements are utilized for computations. Individual operations are specified by the ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements. These individual operations can be combined symbolically
in a formula that uses the COMPUTE statement for ease of programming and performance. The COMPUTE
statement assigns the value of an arithmetic expression to one or more data items. With the COMPUTE
statement, arithmetic operations can be combined without the restrictions on receiving data items imposed
by the rules for the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. When arithmetic operations
are combined, the COMPUTE statement can be more efficient than the separate arithmetic statements
written in a series. For these reasons, it is best practice to use the COMPUTE statement for most arithmetic
evaluations rather than ADD , SUBTRACT , MULTIPLY , and DIVIDE statements. Often, you can code only one
COMPUTE statement instead of several individual arithmetic statements. The COMPUTE statement assigns the
result of an arithmetic expression to one or more data items, for example:

COMPUTE z = a + b / c ** d - e

COMPUTE x y z = a + b / c ** d - e

Some arithmetic calculations might be more intuitive using arithmetic statements other than COMPUTE . You
might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for division in which you want to
process a remainder. The REM intrinsic function also provides the ability to process a remainder.

14.2 Arithmetic expression precedence rules
Order of operation rules have been hammered into your head throughout the years of learning mathematics,
remember the classic PEMDAS (parentheses, exponents, multiply, divide, add, subtract)? Arithmetic
expressions in COBOL are not exempt from these rules and often use parentheses to specify the order in
which elements are to be evaluated.

14.2.1 Parentheses

Parentheses are used to denote modifications to normal order of operations (precedence rules). An arithmetic
expression within the parentheses is evaluated first and result is used in the rest of the expression. When
expressions are contained within nested parentheses, evaluation proceeds from the least inclusive to the most
inclusive set. That means you work from the inner most expression within parentheses to the outer most.
The precedence for how to solve an arithmetic expression in Enterprise COBOL with parentheses is:

1. Parentheses (simplify the expression inside them)

2. Unary operator

3. Exponents

4. Multiplication and division (from left to right)

5. Addition and subtraction (from left to right)

Parentheses either eliminate ambiguities in logic where consecutive operations appear at the same hierarchic
level or modify the normal hierarchic sequence of execution when necessary. When the order of consecutive

110

operations at the same hierarchic level is not completely specified by parentheses, the order is from left to
right.

An arithmetic expression can begin only with a left parenthesis, a unary operator, or an operand (that is, an
identifier or a literal). It can end only with a right parenthesis or an operand. An arithmetic expression must
contain at least one reference to an identifier or a literal.

There must be a one-to-one correspondence between left and right parentheses in an arithmetic expression,
with each left parenthesis placed to the left of its corresponding right parenthesis. If the first operator in
an arithmetic expression is a unary operator, it must be immediately preceded by a left parenthesis if that
arithmetic expression immediately follows an identifier or another arithmetic expression.

14.3 Arithmetic expression limitations
Exponents in fixed-point exponential expressions cannot contain more than nine digits. The compiler will
truncate any exponent with more than nine digits. In the case of truncation, the compiler will issue a
diagnostic message if the exponent is a literal or constant; if the exponent is a variable or data-name, a
diagnostic message is issued at run time.

Detailed explanation of fixed-point exponential expressions is an advanced topic and beyond the scope of the
chapter. However, reference is made to fixed-point exponential expressions for your awareness as you advance
your experience level with COBOL programming and arithmetic applied to internal data representations.

14.4 Arithmetic statement operands
The data descriptions of operands in an arithmetic statement need not be the same. Throughout the
calculation, the compiler performs any necessary data conversion and decimal point alignment.

14.4.1 Size of operands

If the ARITH(COMPAT) compiler option is in effect, the maximum size of each operand is 18 decimal digits.
If the ARITH(EXTEND) compiler option is in effect, the maximum size of each operand is 31 decimal digits.

The composite of operands is a hypothetical data-item resulting from aligning the operands at the decimal
point and then superimposing them on one another. How to determine the composite of operands for
arithmetic statements is shown in Table 2.

If the ARITH(COMPAT) compiler option is in effect, the composite of operands can be a maximum of 30
digits. If the ARITH(EXTEND) compiler option is in effect, the composite of operands can be a maximum
of 31 digits.

Statement Determination of the composite of operands
SUBTRACT, ADD Superimposing all operands in a given statement,

except those following the word GIVING.
MULTIPLY Superimposing all receiving data-items
DIVIDE Superimposing all receiving data items except the

REMAINDER data-item
COMPUTE Restriction does not apply

Table 2. How the composite of operands is determined

In all arithmetic statements, it is important to define data with enough digits and decimal places to ensure
the required accuracy in the result. Arithmetic precision details are available in the IBM Enterprise COBOL
Programming Guide Appendix A.

Additionally, in the IBM Enterprise COBOL Language Reference, Chapter 20. “PROCEDURE DIVISION
Statements”, includes a detailed explanation of DIVIDE and COMPUTE statement capabilities applied to

111

https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library
https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library

ROUNDING and ON SIZE ERROR handling.

14.5 Examples of COBOL arithmetic statements
In this section, COBOL source code used in previous labs will be modified to demonstrate arithmetic
processing. Figure 1. shows level number data-items in the WORKING-STORAGE section. The data-items
will be used to total client account limit and client account balance. Observe that the initial value is ZERO.

Figure 1. Number level data-items (1)

Shown in Figure 2. is another example of number level data-items in the WORKING-STORAGE section.
These data-items are report trailer lines that are used to write a formatted total account limit and total
account balance for all clients in the report. Observe the TLIMIT and TBALANCE data-items with large
currency number picture clauses.

Figure 2. Number level data-items (2)

In Figure 3. the READ-NEXT-RECORD paragraph, located within the PROCEDURE DIVISION, includes
a PERFORM LIMIT-BALANCE-TOTAL statement. The result of this statement is to transfer control to
the LIMIT-BALANCE-TOTAL paragraph, located within the PROCEDURE DIVISION, to perform the
COMPUTE statements.

112

Figure 3. READ-NEXT-RECORD.

Figure 4. is an example of two COMPUTE statements in the paragraph, LIMIT-BALANCE-TOTAL. Notice
that the results of the COMPUTE statements are to add client ACCT-LIMIT to the current TLIMIT and
add client ACCT-BALANCE to TBALANCE totals each time the paragraph is executed, which is one time
for each client record read in our example.

Figure 4. COMPUTE statements

The WRITE-TLIMIT-TBALANCE paragraph shown in Figure 5. is positioned within the PROCEDURE
DIVISION to be executed immediately after all records are read and before the final paragraph that closes
the files and terminates program execution.

Figure 5. WRITE-TLIMIT-TBALANCE

113

14.6 Lab
This lab requires two COBOL programs, CBL0008 and CBL0009 and two respective JCL Jobs, CBL0008J
and CBL0009J, to compile and execute the COBOL programs. All of which are provided to you in your
VSCode - Zowe Explorer.

14.6.0.1 Using VSCode and Zowe Explorer

1. Take a moment and look over the source code of the two COBOL programs provided: CBL0008 and
CBL0009.

2. Submit CBL0008J

3. Observe report written with trailers consisting of limit and balance totals at the bottom of the output.

Figure 6. Limit and balance totals

4. Submit CBL0009J

5. Was the job successful? If not, find the compile error message to understand why.

6. Modify id.CBL(CBL0009), correcting the compile error.*

Figure 7. IGYPS2121-S error message

7. Re-submit CBL0009J

8. Validate that the syntax error was corrected by getting an error free output file like in Figure 8. The
correction should report written with trailers consisting of limit and balance totals, like Figure 6.

Figure 8. Successful compile

Lab Hints

114

15 Data types
A COBOL programmer must be aware that the computer stored internal data representation and formatting
can differ, where the difference must be defined in the COBOL source code. Understanding the computer’s
internal data representation requires familiarity with binary, hexadecimal, ASCII, and EBCDIC. Packed-
Decimal is needed to explain COBOL Computational and Display data format. This chapter aims to
familiarize the reader with these different “types” of data representation.

• Data representation

– Numerical value representation

– Text representation

• COBOL DISPLAY vs COMPUTATIONAL

• Lab

15.1 Data representation
Data such as numerical values and text are internally represented by zeros and ones in most computers,
including mainframe computers used by enterprises. While data representation is a somewhat complex
topic in computer science, a programmer does not always need to fully understand how various alternative
representations work. It is important, however, to understand the differences and how to specify a specific
representation when needed.

15.1.1 Numerical value representation

COBOL has five computational (numerical) value representations. The awareness of these representations is
important due to two main reasons. The first reason being, when a COBOL program needs to read or write
data, it needs to understand how data is represented in the dataset. The second reason is when there are
specific requirements regarding the precision and range of values being processed. For additional details on
binary and hexadecimal numbering systems as well as these numeric representations, consider reading the
“Numerical Data Representation” chapter in the advanced topics course.

15.1.1.1 COMP-1 This is also known as a single-precision floating point number representation. Due to
the floating-point nature, a COMP-1 value can be very small and close to zero, or it can be very large (about
10 to the power of 38). However, a COMP-1 value has limited precision. This means that even though a
COMP-1 value can be up to 10 to the power of 38, it can only maintain about seven significant decimal digits.
Any value that has more than seven significant digits are rounded. This means that a COMP-1 value cannot
exactly represent a bank balance like $1,234,567.89 because this value has nine significant digits. Instead,
the amount is rounded. The main application of COMP-1 is for scientific numerical value storage as well as
computation.

15.1.1.2 COMP-2 This is also known as a double-precision floating point number representation. COMP-
2 extends the range of value that can be represented compared to COMP-1. COMP-2 can represent values
up to about 10 to the power of 307. Like COMP-1, COMP-2 values also have a limited precision. Due to the
expanded format, COMP-2 has more significant digits, approximately 15 decimal digits. This means that
once a value reaches certain quadrillions (with no decimal places), it can no longer be exactly represented in
COMP-2.

COMP-2 supersedes COMP-1 for more precise scientific data storage as well as computation. Note that
COMP-1 and COMP-2 have limited applications in financial data representation or computation.

15.1.1.3 COMP-3 This is also known as packed BCD (binary coded decimal) representation. This is,
by far, the most utilized numerical value representation in COBOL programs. Packed BCD is also somewhat
unique and native to mainframe computers such as the IBM z architecture.

115

Unlike COMP-1 or COMP-2, packed BCD has no inherent precision limitation that is independent to the
range of values. This is because COMP-3 is a variable width format that depends on the actual value format.
COMP-3 exactly represents values with decimal places. A COMP-3 value can have up to 31 decimal digits.

15.1.1.4 COMP-4 COMP-4 is only capable of representing integers. Compared to COMP-1 and COMP-
2, COMP-4 can store and compute with integer values exactly (unless a division is involved). Although
COMP-3 can also be used to represent integer values, COMP-4 is more compact.

15.1.1.5 COMP-5 COMP-5 is based on COMP-4, but with the flexibility of specifying the position of a
decimal point. COMP-5 has the space efficiency of COMP-4, and the exactness of COMP-3. Unlike COMP-3,
however, a COMP-5 value cannot exceed 18 decimal digits..

15.1.2 Text representation

COBOL programs often need to represent text data such as names and addresses.

15.1.2.1 EBCDIC Extended Binary Coded Decimal Interchange Code (EBCDIC) is an eight binary
digits character encoding standard, where the eight digital positions are divided into two pieces. EBCDIC
was devised in the early 1960’s for IBM computers. EBCDIC is used to encode text data so that text can be
printed or displayed correctly on devices that also understand EBCDIC.

15.1.2.2 ASCII American Standard Code for Information Interchange, ASCII, is another binary digit
character encoding standard.

15.1.2.3 EBCDIC vs ASCII Why are these two standards when they seemingly perform the same
function?

EBCDIC is a standard that traces its root to punch cards designed in 1931. ASCII, on the other hand, is a
standard that was created, unrelated to IBM punch cards, in 1967. A COBOL program natively understands
EBCDIC, and it can comfortably process data originally captured in punch cards as early as 1931.

ASCII is mostly utilized by non-IBM computers.

COBOL can encode and process text data in EBCDIC or ASCII. This means a COBOL program can
simultaneously process data captured in a census many decades ago while exporting data to a cloud service
utilizing ASCII or Unicode. It is important to point out, however, that the programmer must have the
awareness and choose the appropriate encoding.

15.2 COBOL DISPLAY vs COMPUTATIONAL
Enterprise COBOL for z/OS by default utilizes EBCDIC encoding. However, it is possible to read and write
ASCII in z/OS. The EBCDIC format representation of alphabetic characters is in a DISPLAY format. Zoned
decimal for numbers, without the sign, is in a DISPLAY format. Packed decimal, binary and floating point
are NOT in a DISPLAY format. COBOL can describe packed decimal, binary and floating point fields using
COMPUTATIONAL, COMP-1, COMP-2, COMP-3, COMP-4, and COMP-5 reserved words.

15.3 Lab
Many of the previous COBOL lab programs you have worked with thus far are reading records containing two
packed decimal fields, the client account limit and the client account balance. In the Arithmetic expressions
lab, the total of all client account limits and balances used a COMPUTE statement, where the COMP-3
fields contained the packed decimal internal data.

What happens when an internal packed decimal field is not described using COMP-3? Without using COMP-3
to describe the field, the COBOL program treats the data as DISPLAY data (EBCDIC format). This lab
demonstrates what happens during program execution without using COMP-3.

116

15.3.0.1 Using VSCode and Zowe Explorer

1. Submit the job, id.JCL(CBL0010J)

2. Observe that the compile of the COBOL source was successful, however, also observe that the execution
of the job failed. How can you tell?

There’s no CC code next to CBL0010J(JOB#), instead there is an ABENDU4038 message. U4038 is a
common user code error typically involving a mismatch between the external data and the COBOL
representation of the data.

3. Read the execution SYSOUT message carefully. The SYSOUT message mistakenly believes the records
are 174 characters in length while the program believes the records are 170 characters in length.

Explanation: Packed decimal (COMP-3) expands into two numbers where only one number would
typically exist. If the program reads a packed decimal field without describing the field as COMP-3, then
program execution becomes confused about the size of the record because the PIC clause, S9(7)V99, is
expecting to store seven numbers plus a sign digit when only three word positions are read. Therefore,
execution reports a four-record length position discrepancy.

4. Edit id.CBL(CBL0010) to identify and correct the source code problem.*

5. Submit id.JCL(CBL0010J) and verify correction is successful with a CC 0000 code.

Lab Hints:

The ACCT-LIMIT PIC clause in the ACCT-FIELDS paragraph should be the same as the PIC clause for
ACCT-BALANCE.

117

16 Intrinsic functions
Today’s COBOL is not your parents COBOL. Today’s COBOL includes decades of feature/function rich
advancements and performance improvements. Decades of industry specifications are applied to COBOL
to address the growing needs of businesses. What Enterprise COBOL for z/OS promised and delivered, is
decades of upward compatibility with new releases of hardware and operating system software. The original
DNA of COBOL evolved into a powerful, maintainable, trusted, and time-tested computer language with no
end in sight.

Among the new COBOL capabilities is JSON GENERATE and JSON PARSE, providing an easy to use
coding mechanism to transform DATA DIVISION defined data-items into JSON for a browser, a smart phone,
or any IoT (Internet of Things) device to format in addition to transforming JSON received from a browser,
a smart phone, or any IoT device into DATA DIVISION defined data-items for processing. Frequently, the
critical data accessed by a smart phone, such as a bank balance, is stored and controlled by z/OS where a
COBOL program is responsible for retrieving and returning the bank balance to the smart phone. COBOL
has become a web enabled computer language.

Previous COBOL industry specifications included intrinsic functions, which remain largely relevant today.
An experienced COBOL programmer needs to be familiar with intrinsic functions and stay aware of any new
intrinsic functions introduced. This chapter aims to cover the foundation of intrinsic functions and their
usage in COBOL.

• What is an intrinsic function?

– Intrinsic function syntax

– Categories of intrinsic functions

• Intrinsic functions in Enterprise COBOL for z/OS V6.3

– Mathematical example

– Statistical example

– Date/time example

– Financial example

– Character-handling example

• Use of intrinsic functions with reference modifiers

• Lab

16.1 What is an intrinsic function?
Intrinsic functions are effectively re-usable code with simple syntax implementation and are another powerful
COBOL capability. Intrinsic functions enable desired logic processing with a single line of code. They also
provide capabilities for manipulating strings and numbers. Because the value of an intrinsic function is derived
automatically at the time of reference, you do not need to define these functions in the DATA DIVISION.

16.1.1 Intrinsic function syntax

Written as:

FUNCTION function-name (argument)

Where function-name must be one of the intrinsic function names. You can reference a function by specifying
its name, along with any required arguments, in a PROCEDURE DIVISION statement. Functions are
elementary data items, and return alphanumeric characters, national characters, numeric, or integer values.

118

01 Item -1 Pic x(30) Value "Hello World !".
01 Item -2 Pic x(30).
. . .

Display Item -1
Display Function Upper -case(Item -1)
Display Function Lower -case(Item -1)
Move Function Upper -case(Item -1) to Item -2
Display Item -2

Example 1. COBOL FUNCTION reserved word usage

The code shown in Example 1. above, displays the following messages on the system logical output device:

Hello World! HELLO WORLD! hello world! HELLO WORLD!

16.1.2 Categories of intrinsic functions

The intrinsic functions can be grouped into six categories, based on the type of service performed. They are
as follows:

1. Mathematical

2. Statistical

3. Date/time

4. Financial

5. Character-handling

6. General

Intrinsic functions operate against alphanumeric, national, numeric, and integer data-items.

• Alphanumeric functions are of class and category alphanumeric. The value returned has an implicit
usage of DISPLAY. The number of character positions in the value returned is determined by the
function definition.

• National functions are of class and category national. The value returned has an implicit usage of
NATIONAL and is represented in national characters (UTF-16). The number of character positions in
the value returned is determined by the function definition.

• Numeric functions are of class and category numeric. The returned value is always considered to have
an operational sign and is a numeric intermediate result.

• Integer functions are of class and category numeric. The returned value is always considered to have
an operational sign and is an integer intermediate result. The number of digit positions in the value
returned is determined by the function definition.

16.2 Intrinsic functions in Enterprise COBOL for z/OS V6.3
The current release of Enterprise COBOL for z/OS V6.3, includes 70 intrinsic functions. Each one of these
functions falling into one of the aforementioned six categories. While an entire book could be written on
intrinsic functions, a single example for each of the six categories are provided in this section.

16.2.1 Mathematical example

Example 2. is storing into X the total of A + B + value resulting from C divided by D. FUNCTION SUM
enables the arithmetic operation.

Compute x = Function Sum(a b (c / d))

119

Example 2. Mathematical intrinsic function

16.2.2 Statistical example

Example 3. shows three COBOL functions, MEAN, MEDIAN, and RANGE where the arithmetic values are
stored in Avg-Tax, Median-Tax, and Tax-Range using the data names with assigned pic clause values.

01 Tax -S Pic 99 v999 value .045.
01 Tax -T Pic 99 v999 value .02.
01 Tax -W Pic 99 v999 value .035.
01 Tax -B Pic 99 v999 value .03.
01 Ave -Tax Pic 99 v999.
01 Median -Tax Pic 99 v999.
01 Tax -Range Pic 99 v999.
. . .

Compute Ave -Tax = Function Mean (Tax -S Tax -T Tax -W Tax -B)
Compute Median -Tax = Function Median (Tax -S Tax -T Tax -W Tax -B)
Compute Tax -Range = Function Range (Tax -S Tax -T Tax -W Tax -B)

Example 3. Statistical intrinsic function

16.2.3 Date/time example

Example 4. shows usage of three COBOL functions, Current-Date, Integer-of-Date, and Date-of-Integer
applied to MOVE, ADD, and COMPUTE statements.

01 YYYYMMDD Pic 9(8).
01 Integer -Form Pic S9 (9).
. . .

Move Function Current -Date (1:8) to YYYYMMDD
Compute Integer -Form = Function Integer -of -Date(YYYYMMDD)
Add 90 to Integer -Form
Compute YYYYMMDD = Function Date -of - Integer (Integer -Form)
Display 'Due Date: ' YYYYMMDD

Example 4. Date/time intrinsic function

16.2.4 Financial example

Example 5. shows application of COBOL function ANNUITY financial algorithm where values for loan
amount, payments, interest, and number of periods are input to ANNUITY function.

01 Loan Pic 9(9) V99.
01 Payment Pic 9(9) V99.
01 Interest Pic 9(9) V99.
01 Number - Periods Pic 99.
. . .

Compute Loan = 15000
Compute Interest = .12
Compute Number - Periods = 36
Compute Payment = Loan * Function Annuity ((Interest / 12)

Number - Periods)

Example 5. Financial intrinsic function

120

16.2.5 Character-handling example

Example 6. shows used of COBOL function UPPER-CASE where an string or alphabetic variable processed
by UPPER-CASE will translate any lower case characters to upper case.
MOVE FUNCTION UPPER -CASE (" This is shouting !") TO SOME -FIELD
DISPLAY SOME -FIELD
Output - THIS IS SHOUTING !

Example 6. Character-handling intrinsic function

16.3 Use of intrinsic functions with reference modifiers
A reference modification defines a data item by specifying the leftmost character position and an optional
length for the data item, where a colon (:) is used to distinguish the leftmost character position from the
optional length, as shown in Example 7.
05 LNAME PIC X(20).

LNAME (1:1)
LNAME (4:2)

Example 7. Reference modification

Reference modification, LNAME(1:1), would return only the first character of data item LNAME, while
reference modification, LNAME(4:2), would return the fourth and fifth characters of LNAME as the result of
starting in the fourth character position with a length of two. If LNAME of value SMITH was the data item
being referenced in the intrinsic function, the first reference would output, S. Considering those same specs,
the second reference would output, TH.

16.4 Lab
This lab contains data that includes a last name, where last name is all upper-case. It demonstrates the use
of intrinsic functions together with reference modification to lower-case the last name characters, except the
first character of the last name.

This lab requires two COBOL programs, CBL0011 and CBL0012 and two respective JCL Jobs, CBL0011J
and CBL0012J, to compile and execute the COBOL programs. All of which are provided to you in your
VSCode - Zowe Explorer.

16.4.0.1 Using VSCode and Zowe Explorer

1. Submit job, CBL0011J.

2. Observe the report output, last name, with first character upper-case and the remaining characters
lower-case.

Figure 1. , below, illustrates the difference in output from the Data types lab compared to this lab.
Notice that in the previous lab, the last names were listed in all capitalized characters, whereas, as
previously stated, this lab output has only the first character of the last name capitalized.

121

Figure 1. Current lab vs. Data types lab output

3. Observe the PROCEDURE DIVISION intrinsic function, lower-case, within the WRITE-RECORD
paragraph. This intrinsic function is paired with a reference modification resulting in output of last
name with upper-case first character and the remainder in lower-case.

4. Submit CBL0012J

5. Observe the compile error.

Previous lab programs made use of a date/time intrinsic function. The date/time intrinsic function in this
lab has a syntax error that needs to be identified and corrected.

6. Modify id.CBL(CBL0012) correcting compile error.*

7. Re-submit CBL0012J

8. Corrected CBL0012 source code should compile and execute the program successfully. A successful
compile will result in the same output as CBL0011J.

Lab Hints

Refer to CBL0011 line 120 for the proper formatting of the function-name causing the compile error.

122

	Part 1 - Getting started
	Why COBOL?
	What is COBOL?
	How is COBOL being used today?
	Why should I care about COBOL?

	VSCode with Zowe Explorer
	Introduction to Zowe Explorer
	Using Zowe Explorer
	Profiles in Zowe Explorer
	Secure Credentials
	Creating a New Profile
	Editing Profiles
	Deleting Profiles

	Summary

	VSCode with Z Open Editor
	Introduction to the IBM Z Open Editor
	What is the IBM Z Open Editor?
	The role of the Language Server Protocol
	Installing the IBM Z Open Editor for VS Code

	Basic editing
	Known file extensions
	Margins
	Variable expansion
	Syntax highlighting

	Navigation of code
	Outline view
	Breadcrumb view
	Jump to declaration / reference

	Code-completion
	COBOL reserved word completion
	Variable completion
	CICS, MQ, DB2 API completion

	Refactoring code
	Renaming variables
	Handling errors

	Summary

	VS Code with Code4z Open-Source Extension Package
	What is Code4z?
	Known File Extensions
	Syntax Highlighting and Coloring
	Syntax and Semantic Check
	Navigation of Code
	Go To Definition
	Find All References

	Copybook Support
	Autocomplete
	Summary

	Zowe CLI and Zowe CLI Plug-ins
	What is a CLI and why would you use it?
	What is Zowe CLI?
	Zowe CLI interactive use
	Installing Zowe CLI
	Interactive Help
	Zowe Profiles
	Interacting with z/OS Data Sets
	Interacting with z/OS Jobs

	Automating tasks using Zowe CLI
	Automated Job Submission
	Using Other Programming Languages and Continuous Integration
	Additional Examples

	The world of modern open source tooling
	Summary

	Installation of VSCode and extensions
	Install prerequisites
	Install node.js
	Install Java SDK

	Install VSCode
	Install VSCode extensions
	Zowe Explorer
	IBM Z Open Editor
	Code4z

	Summary

	Installation of Zowe CLI and Plug-ins
	Install prerequisites - Node.js
	Install Zowe CLI
	Install from Public npm Registry
	Install from Bundled Package

	Install Zowe CLI Plug-ins
	Install from Public npm Registry
	Install from Bundled Package

	Summary

	Part 2 - Learning COBOL
	Basic COBOL
	COBOL characteristics
	Enterprise COBOL
	Chapter objectives

	What must a novice COBOL programmer know to be an experienced COBOL programmer?
	What are the coding rules and the reference format?
	What is the structure of COBOL?
	What are COBOL reserved words?
	What is a COBOL statement?
	What is the meaning of a scope terminator?
	What is a COBOL sentence?
	What is a COBOL paragraph?
	What is a COBOL section?

	COBOL Divisions
	COBOL Divisions structure
	What are the four Divisions of COBOL?

	PROCEDURE DIVISION explained
	Additional information
	Professional manuals
	Learn more about recent COBOL advancements

	Lab
	Lab - Zowe CLI & Automation
	Zowe CLI - Interactive Usage
	Zowe CLI - Programmatic Usage

	Data division
	Variables / Data-items
	Variable / Data-item name restrictions and data types

	PICTURE clause
	PIC clause symbols and data types
	Coding COBOL variable / data-item names
	PICTURE clause character-string representation

	Literals
	Figurative constants
	Data relationships
	Levels of data

	MOVE and COMPUTE
	Lab

	File handling
	COBOL code used for sequential file handling
	COBOL inputs and outputs
	FILE-CONTROL paragraph
	COBOL external data source
	Data sets, records, and fields
	Blocks
	ASSIGN clause

	PROCEDURE DIVISION sequential file handling
	Open input and output for read and write
	Close input and output

	COBOL programming techniques to read and write records sequentially
	READ-NEXT-RECORD paragraph execution
	READ-RECORD paragraph
	WRITE-RECORD paragraph
	Iterative processing of READ-NEXT-RECORD paragraph

	Lab

	Program structure
	Styles of programming
	What is structured programming
	What is Object Orientated Programming
	COBOL programming style

	Structure of the Procedure Division
	Program control and flow through a basic program
	Inline and out of line perform statements
	Using performs to code a loop
	Learning bad behavior using the GO TO keyword

	Paragraphs as blocks of code
	Designing the content of a paragraph
	Order and naming of paragraphs

	Program control with paragraphs
	PERFORM TIMES
	PERFORM THROUGH
	PERFORM UNTIL
	PERFORM VARYING

	Using subprograms
	Specifying the target program
	Specifying program variables
	Specifying the return value

	Summary
	Lab

	File output
	Review of COBOL write output process
	ENVIRONMENT DIVISION

	FILE DESCRIPTOR
	FILLER

	Report and column headers
	HEADER-2

	PROCEDURE DIVISION
	MOVE sentences
	PRINT-REC FROM sentences

	Lab

	Conditional expressions
	Boolean logic, operators, operands, and identifiers
	COBOL conditional expressions and operators
	Examples of conditional expressions using Boolean operators

	Conditional expression reserved words and terminology
	IF, EVALUATE, PERFORM and SEARCH
	Conditional states
	Conditional names

	Conditional operators
	Conditional expressions
	IF ELSE (THEN) statements
	EVALUATE statements
	PERFORM statements
	SEARCH statements

	Conditions
	Relation conditions
	Class conditions
	Sign conditions

	Lab

	Arithmetic expressions
	What is an arithmetic expression?
	Arithmetic operators
	Arithmetic statements

	Arithmetic expression precedence rules
	Parentheses

	Arithmetic expression limitations
	Arithmetic statement operands
	Size of operands

	Examples of COBOL arithmetic statements
	Lab

	Data types
	Data representation
	Numerical value representation
	Text representation

	COBOL DISPLAY vs COMPUTATIONAL
	Lab

	Intrinsic functions
	What is an intrinsic function?
	Intrinsic function syntax
	Categories of intrinsic functions

	Intrinsic functions in Enterprise COBOL for z/OS V6.3
	Mathematical example
	Statistical example
	Date/time example
	Financial example
	Character-handling example

	Use of intrinsic functions with reference modifiers
	Lab

